filter press
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 67)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 53 (6) ◽  
pp. 210603
Author(s):  
Gede Adi Wiguna Sudiartha ◽  
Prayatni Soewondo

Most of the wastewater generated from domestic activities in Denpasar city is treated in an off-site treatment plant located in WWTP DSDP Suwung. This includes faecal sludge that originates from on-site treatment plants. The existing treatment facilities can only treat wastewater that has a maximum biochemical oxygen demand (BOD) concentration of around 225 mg/l while the disposed faecal sludge’s BOD concentration reaches 3,394 mg/l. Therefore, an additional faecal sludge treatment plant needs to be established in order to separate the solid phase from the liquid phase. According to the treatment performance calculation, some alternative treatments can achieve BOD5 and TSS removal of up to 97% and 98% respectively. The selection of the alternative treatment was decided from weighting results of several aspects, such as economic, land use, technological and environmental aspects. The weighting method that was used in this research was Simple Additive Weighting (SAW). The advantage of SAW is its ability to do the assessment highly precisely because it is based on predetermined criteria and preference weights. Based on the weighting result, the treatment technology selected was a Solid Separation Chamber as primary treatment, combined with an Anaerobic Baffled Reactor as a secondary treatment. A Belt Filter-Press was applied to reshape the sludge into a recyclable cake. The required cost is approximately 16 billion rupiahs.


2021 ◽  
Author(s):  
Sheldon Peter Anthony Seales ◽  
Ahmed Rashed Alaleeli ◽  
Jan Erik Tveteraas ◽  
Daniel Martin Roberts ◽  
Glenn Aasland ◽  
...  

Abstract Objectives/Scope This paper outlines a new and innovative technology for brine recovery after the displacement of Reservoir Drill-In Fluid Non-Aqueous Fluid (RDF NAF) to Completion Brine and the associated operational, logistical, environmental and economic benefits associated with it. A unique slop treatment technology has been utilized to recover and reuse more than 2,168 bbl per well of expensive contaminated completion fluid to help manage losses and avoid injecting valuable completion fluid into operator's injection well. This has also resulted in reducing impact to the life of the injection well and burden on formation, thereby minimizing impact to subsurface environment and contributing to lower well cost. Methods, Procedures, Process The contaminated brine was transferred from the displacement of RDF NAF to brine and processed using a novel slop treatment technology to reduce the NTU and TSS to completion brine specifications required for completion operations. After displacing the well from RDF NAF to brine, typical contaminants would be RDF NAF and hi-vis spacer (water-based). The oil-contaminated brine was usually transferred to the tanks of the cuttings treatment contractor, treated and injected into the operator's cuttings re-injection (CRI) well. The new procedure isolated the contaminated brine to be processed through the slop treatment technology to separate and remove the oil and solids from the brine. The slop treatment involved passing the contaminated fluid through a decanter, solids particulate filter, three-phase separator and then a polishing filter to process the fluid to the required NTU and TSS specifications. Results, Observations, Conclusions The slops treatment unit was implemented for brine processing in 2020 and since then, the solution has achieved desirable operational, logistical, sub-surface environmental and cost related benefits. 2,168 bbl of expensive, contaminated completion brine has been processed per well, for subsequent reuse in the completion operations. Utilization and implementation of this mechanical process, versus the historical filter press process, at the source has had clear tangible savings that can be achieved in all areas of the operation, due to the capability to process oil-contaminated brine at a higher clarity and also the viscous brine at a faster rate. This new processing strategy allowed the operator to set new standards with regards to the recovery of oil-contaminated brine, in the UAE. Novel/Additive Information This is the first successful processing of oil-contaminated brine to be completed in the UAE utilizing a mechanical technology. This process has established new baselines for the operator to be able to recover oil-contaminated brine. By adapting the existing site-based slop treatment technology, this solution has bridged a gap in the market by using a novel mechanical process to optimize oil-contaminated brine recovery efficiency and maximize returns for operators.


2021 ◽  
Author(s):  
Mumin Abdalla Abdelrahim ◽  
Dr. Bisweswar Ghosh ◽  
Dr. Hadi Belhaj ◽  
Debayan Ghosh

Abstract Hydraulic fracturing, commonly referred to as fracking, is a widely used technology to enhance the productivity of low-perm reservoirs and the aqueous-based fracturing fluids use guar as the rheology builder. Residual polymer layer over the fractured surface results in a reduced matrix to fracture permeability, causing reduced well productivity. This research aims to develop a specialized mannanase enzyme and evaluate its efficiency in degrading linear and cross-linked guar polymer gel as a function of time, temperature, and breaker concentration, to enhance the effectiveness of the fracturing process and yielding higher production. The study begins with developing high-temperature stable mannanase using "protein engineering" tools to minimize denaturation at high temperatures and the underlying formation chemistry, followed by optimization of polymer, crosslinker, and breaker concentration through the measurement of rheological properties at moderate to high temperature. Initial studies were conducted using HT-HP filter press and filter papers as porous media for visual inspection of polymer cake dissolution efficiency. Final conclusions were drawn from the simulated coreflooding studies, wherein the injection and production return permeabilities were investigated on post-fracture and enzyme-treated cores, where the breaker was mixed with the frac fluid applied once the frac fluid is in place. The thermal stability of the enzyme breaker vis-à-vis viscosity reduction and degradation pattern of linear and cross-linked gel observed from the break test showed that the enzyme is stable up to 250 °F and can reduce viscosity by more than 1800 cp (99% breaking ability).


Konversi ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Indah Listiowati ◽  
Abdul Hakim ◽  
Shinfi Wazna Auvaria

Tujuan pada penilitian ini, untuk mengetahui kualitas dan perencanaan pengolahan lumpur instalasi pengolahan air PDAM. Metode yang digunakan mengenai tahapan pengampilan sampel yaitu dengan grab sampling, dan pengambilan dilakukan selama 8 hari. Pengambilan sampel lumpur dilkakukan pada pipa yang didiamkan mengalir selama 30 detik agar didapatkan debit konstan. Analisa untuk uji kualitas lumpur IPA PDAM dilakukan di laboratorium. Hasil dari penelitian mengenai uji kualitas  pada pipa pembuangan lumpur pada unit sedimentasi. Data yang dibutuhkan meliputi data primer, dan sekunder. Hasil dari penelitian ini mengenai uji kualitas lumpur dari instalasi pengolahan air PDAM, memiliki nilai rata-rata pH 7,7, suhu 27°C, kekeruhan >1000 NTU hal ini dikarenakan kualitas air baku yang memiliki kandungana koloid tinggi. Total solid memiliki nilai rata-rata 281.772 mg/L, total suspended solid dengan nilai rata-rata 52.134 mg/L, COD memiliki nilai rata-rata 3.100 mg/L, dan BOD 3,96 mg/L dengan nilai ratarata . Debit rata-rata harian lumpur yang dihasilkan dari instalasi pengolahan air sebesar 145,773 m3/hari. Unit yang direncanakan sesuai dengan kualitas, dan volume yang diketahui maka direncanakan unit pengolahan lumpur meliputi bak pengumpul, gravity thickening, belt filter press, dan bak pengumpul dry cake. Anggaran biaya yang direncanakan untuk perencanaan pengolahan lumpur instalasi pengolahan air sesuai dengan unit yang diperlukan membutuhkan anggaran dana sebesar Rp. 1.037.900.00,00.


2021 ◽  
Author(s):  
Huizhon LIU ◽  
Keshun YOU

Abstract In order to better improve the efficiency of the concentrate filter press dehydration operation, this paper studies the mechanism and optimization methods of the filter press dehydration process. Machine learning models of RBF-OLS, RBF-GRNN and support vector regression (SVR) are constructed respectively, and Perform laboratory simulation and industrial simulation separately. SVR achieves the best accuracy in industrial simulation, the simulated mean relative error (MRE) of moisture and processing capacity are respectively 1.57% and 3.81%. Finally, a simulation model of the filter press dehydration process established by SVR, and the optimtical simulation results Obtained by optimization method based on control variables. The results show that the machine learning method of SVR and optimization methods based on control variables are applied to industry, which can not only ensure the stability of expected production indicators, but also shorten the filter press dehydration cycle to less than 85% of the original.


2021 ◽  
Author(s):  
Maunish Shah ◽  
Nicholas A. Koster ◽  
Connor Clark ◽  
Subhash N. Shah

Abstract The technique of employing specialized particulates for far-field diversion is well-established during hydraulic fracturing treatments in unconventional formations and is being investigated for use in conventional formations. Far-field diverters (FFD) divert fluid away from the wellbore far into the formation. The injection of FFD at the beginning of the treatment provides an additional stress barrier between the producing interval and adjacent layers by depositing at the layer boundaries where higher leak-off is encountered. The ensuing restriction in height growth maximizes fracture extension within the producing zone, optimizing geometry for increased hydrocarbon production while limiting excess water. Polylactic Acid (PLA) polymer is self-degradable, compatible with reservoir fluids, and has a variety of compositions for different temperature applications. Blending proppant with PLA has been seen to significantly improve the strength of the deposited far-field diverter. Therefore, PLA powder and silica proppant are blended to develop Generation-1 far-field diverter (FFD-Gen1). However, many silica proppants have greater density than PLA, leading to separation during transport which prevents these two components from depositing evenly at the upper fracture boundary. This results in a situation in which excessive downward growth is prevented while upward growth is left unchecked. For this reason, both components need to be simultaneously deposited in order to develop an effective seal. Generation-2 far-field diverter (FFD-Gen2) is developed by replacing silica proppant of FFD-Gen1 with a deformable proppant having a density nearly equal to the polymer, which enables uniform deposition on all adjacent formation boundaries where leakoff is encountered. The deformable characteristic improves the pressure withstanding capacity of the diverter pack. The deposition and degradation behaviors are investigated in the laboratory by performing HTHP filter press and plug stability experiments. Experimental findings suggest that the primary selection criteria for acceptable performance are the material's mechanical properties. This methodology is used to select the appropriate FFD materials to optimize fracture geometry in carbonate reservoirs. Successful applications prevent excessive water production and substantially increase hydrocarbon production as illustrated in a three well case studies.


Author(s):  
S. Nappi ◽  
S. Amendola ◽  
M. Ramacciotti ◽  
E. Zambonini ◽  
N. D'Uva ◽  
...  

2021 ◽  
pp. 48-51
Author(s):  
S. B. Makhkambaev ◽  
N. A. Chichenev
Keyword(s):  

Author(s):  
Maria Braune ◽  
Bomin Yuan ◽  
Heike Sträuber ◽  
Stewart Charles McDowall ◽  
Roy Nitzsche ◽  
...  

Production of caproic and caprylic acid through anaerobic fermentation of crops or residual and waste biomass has been regarded as an alternative to the conventional ways, where plant oils and animal fats are mostly used. The downstream processing of the fermentation broth is a particular challenge since the broth has a highly complex composition and low concentrations of the target products. In this study, the proof-of-principle for a separation cascade for caproic (C6) and caprylic acid (C8) produced in a maize silage-based fermentation process was demonstrated. For clarification of the fermentation broth, a filter press and a ceramic ultrafiltration membrane was used to remove coarse solids and to separate suspended particles and macromolecules from the fermentation broth, respectively. With both techniques, the dry matter content was reduced from 6.8 to 2.3% and a particle-free product solution was obtained. Subsequently, the carboxylic acids were extracted with oleyl alcohol by liquid-liquid extraction with an extraction efficiency of 85% for C6 and 97% for C8. Over the whole cascade, 58% of caproic acid and 66% of caprylic acid were recovered from the fermentation broth into the extract. Among all separation steps, solid-liquid separation with the filter press caused the major part of the product loss of 21% of each carboxylic acid. By using separation equipment with a better solid separation efficiency such as decanter centrifuges or belt filter presses this loss could be minimized.


Sign in / Sign up

Export Citation Format

Share Document