INFLUENCE OF THE FLAT ROOF PROCESS ON THE SITE OF DETAIL OF THE ATICS USING THE MAIN WATERPROOFING LAYER MADE OF PLASTICIZED POLYVINYL CHLORIDE

Author(s):  
Ondrej Necas
Keyword(s):  
2017 ◽  
Vol 67 (325) ◽  
pp. 109
Author(s):  
A. Pedrosa ◽  
M. Del Río

This paper discusses the analysis of several samples of a plasticized polyvinyl chloride (PVC-P) waterproofing membrane. The samples were extracted from different areas of the same flat roof, which was in service for over 12 years. An original sample of an identical PVC-P membrane that was not installed on the roof was also analyzed. The analysis of the materials was carried out using a scanning electron microscope (SEM). An elemental analysis of every sample was also performed by energy dispersive X-ray spectroscopy (EDS). Micrographs and the elemental composition of the samples were compared with the data obtained in the analysis of the original sample. The results show dehydrochlorination of the polymer in two of the samples studied and great deterioration that was not visible to the naked eye in the sample that was totally exposed to the weather.


2014 ◽  
Vol 64 (316) ◽  
pp. 037 ◽  
Author(s):  
A. Pedrosa ◽  
M. Del Río ◽  
C. Fonseca

The inverted flat roof is a constructive system widely used in flat roof construction. In this constructive solution, the insulation is placed over the waterproofing material as a protection. It is believed that this solution provides a longer life cycle; given the fact that it limits the thermal variation the waterproofing material bears up to the end of its life cycle. Consequently, the result will be providing a longer life to the waterproofing membrane. This constructive solution always incorporates polymers or other materials with a thermoplastic addition in their composition. Some polymers show interactions between them that can affect their integrity, and, at the same time, the bulk of the polymeric materials are incompatible. The extruded polystyrene board is always present in the inverted flat roof, and although it is an unbeatable product for this use, it presents incompatibilities and interactions with other materials, and these can affect their properties and therefore the durability of them.


Author(s):  
T. G. Gregory

A nondestructive replica technique permitting complete inspection of bore surfaces having an inside diameter from 0.050 inch to 0.500 inch is described. Replicas are thermally formed on the outside surface of plastic tubing inflated in the bore of the sample being studied. This technique provides a new medium for inspection of bores that are too small or otherwise beyond the operating limits of conventional inspection methods.Bore replicas may be prepared by sliding a length of plastic tubing completely through the bore to be studied as shown in Figure 1. Polyvinyl chloride tubing suitable for this replica process is commercially available in sizes from 0.037- to 0.500-inch diameter. A tube size slightly smaller than the bore to be replicated should be used to facilitate insertion of the plastic replica blank into the bore.


Sign in / Sign up

Export Citation Format

Share Document