replica technique
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 23)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 25 ◽  
Author(s):  
Felipe P. Faria ◽  
Thamara M. O. Ruellas ◽  
Carolina Del Roveri ◽  
João Otávio Donizette Malafatti ◽  
Elaine Cristina Paris ◽  
...  

2021 ◽  
Vol 10 (17) ◽  
pp. e162101724429
Author(s):  
Lucas José de Azevedo-Silva ◽  
Brunna Mota Ferrairo ◽  
Renato José Berro-Filho ◽  
Fernanda Ferruzzi Lima ◽  
José Henrique Rubo

Marginal and internal adaptation are parameters of crucial importance to the success of prosthetic crowns. Automatized process creates an expectative of superior or equivalent results compared to restorations manufactured ​​by conventional lost-wax technique. The purpose of this study was to evaluate the marginal adaptation and internal adaptation (cement space) of metal-ceramic crown copings produced by lost-wax (LW) and direct metal laser sintering (DMLS) techniques. An artificial lower first molar was prepared for a full crown, duplicated in plaster and scanned. Twenty metal-ceramic crown copings were fabricated in cobalt-chromium by the two techniques (n=10). The copings were filled with low viscosity silicone and seated on the prepared tooth, resulting in a replica of the internal space. The pellicle formed was embedded in heavy body silicone, sectioned and captured by means of a stereomicroscope at 50x magnification, according to replica technique (RT). Shapiro-Wilk test followed by Holm-Sidak test were used for statistical analysis (α=.05). Marginal adaptation presented no difference between LW (101.5 ± 41.6) and DMLS (86.3 ± 39.9) groups (p=0.24). Conventional LW technique showed significantly lower occlusal (p<0.008) and axial spaces (p<0.03).  Measurements of all regions showed numerically larger adaptation values than that defined during design​​ for DMLS group. Both the LW technique and the DMLS technique are within the clinically acceptable.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Amirhesam Amini ◽  
Somayeh Zeighami ◽  
Safoura Ghodsi

Purpose. This study aimed to compare marginal and internal adaptation in endocrowns made from translucent zirconia and zirconium lithium silicate using CAD-CAM technology. Materials and Methods. Twenty-eight freshly extracted upper molars were mounted in acrylic resin and underwent root canal therapy and endocrown preparation up to 2 mm above the cementoenamel junction. Endocrowns were CAD-CAM milled from zirconium lithium silicate (ZLS) and translucent zirconia (Zr). Internal and marginal adaptation was assessed by the replica technique before cementation. Marginal adaptation was evaluated by a stereomicroscope (×32) before and after cementation and also after thermomechanical aging. Results. The ZLS group showed significantly higher internal adaptation compared to the Zr group ( P  = 0.028), while the marginal adaptation differences, at different times with different methods, were not statistically significant ( P  > 0.05). Axiomarginal angle had the highest and axiopulpal angle showed the lowest adaptation in both groups. The cementation process and thermomechanical aging increased the marginal gap in both groups significantly ( P  < 0.001). The marginal gap assessed by the replica technique before cementation was 7.11 µm higher than direct view under a stereomicroscope with intraclass correlation coefficient of 0.797. Conclusion. Zirconia seems to be an acceptable material for endocrown with comparable internal and marginal adaptation to ZLS. Cementation and thermomechanical aging had significantly negative effects on marginal gap. The marginal gap assessed by the replica technique was higher than direct view under the stereomicroscope technique.


2021 ◽  
Vol 9 ◽  
Author(s):  
Victor V. Rogov ◽  
Anna N. Kurchatova ◽  
Natalia A. Taratunina

The study focuses on authigenic carbonates that are widespread in different deposition environments and are a component part of the terrestrial biogeochemical cycle of carbon. Samples from the Kolyma Yedoma Ice Complex that formed during the Sartan Cryochrone (MIS 2), the coldest period of the Late Pleistocene, in the northeastern Siberian lowlands, have been studied utilizing scanning electron microscopy and energy-dispersive spectroscopy with replica technique. The samples bear signatures of irreversible multistage cryogenic changes in structure and composition, with the formation of authigenic minerals. Authigenic carbonates as secondary phases in the Ice Complex deposits are remarkable by local changes in chemical, physical, and other properties, which induce gradual changes in the lattice and conversion of one mineral species to another. As a result, the sediments may contain stable and metastable minerals. Crystalline species like calcite or aragonite precipitate from aqueous solutions and their presence are restricted to free pore space in segregation ice. Metastable phases may be produced as an initial reaction product between the CO2 and the aqueous phase, while mineral surfaces and small pores act as possible nucleation sites. Organic matter is also an important agent in the cryometamorphism of sediments, including precipitation of authigenic phases due to the freezing of colloids and high-molecular compounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keunbada Son ◽  
Young-Tak Son ◽  
Ji-Min Lee ◽  
Kyu-Bok Lee

AbstractThis study evaluated the marginal and internal fit and intaglio surface trueness of interim crowns fabricated from tooth preparation scanned at four finish line locations. The right maxillary first molar tooth preparation model was fabricated using a ceramic material and placed in four finish line locations (supragingival, equigingival, subgingival, and subgingival with a cord). Intraoral scanning was performed. Crowns were designed based on the scanned area. Interim crowns were fabricated using a stereolithography three-dimensional (3D) printer (N = 16 per location). Marginal and internal fit were evaluated with a silicone replica technique. Intaglio surface trueness was evaluated using a 3D inspection software. One-way analysis of variance and Tukey HSD test were performed for comparisons (α = 0.05). The marginal and internal fit showed significant differences according to locations (P < 0.05); the marginal fit showed the best results in the supragingival finish line (P < 0.05). Intaglio surface trueness was significantly different in the marginal region, with the highest value in the subgingival location (P < 0.05). Crowns fabricated on the subgingival finish line caused inaccurate marginal fit due to poor fabrication reproducibility of the marginal region. The use of an intraoral scanner should be decided on the clinical situation and needs.


2021 ◽  
Author(s):  
Keunbada Son ◽  
Young-Tak Son ◽  
Ji-Min Lee ◽  
Kyu-Bok Lee

Abstract This study evaluated the marginal and internal fit and intaglio surface trueness of interim crowns fabricated from tooth preparation scanned at four finish line locations. The right maxillary first molar tooth preparation model was fabricated using a ceramic material and placed in four finish line locations (supragingival, equigingival, subgingival, and subgingival with a cord). Intraoral scanning was performed. Crowns were designed based on the scanned area. Interim crowns were fabricated using a stereolithography three-dimensional (3D) printer (N = 16 per location). Marginal and internal fit were evaluated with a silicone replica technique. Intaglio surface trueness was evaluated using a 3D inspection software. One-way analysis of variance and Tukey HSD test were performed for comparisons (α = 0.05). The marginal and internal fit showed significant differences according to locations (P < 0.05); the marginal fit showed the best results in the supragingival finish line (P < 0.05). Intaglio surface trueness was significantly different in the marginal region, with the highest value in the subgingival location (P < 0.05). Crowns fabricated on the subgingival finish line caused inaccurate marginal fit due to poor fabrication reproducibility of the marginal region. A supragingival finish line is recommended for interim crown fabrication using an intraoral scanner.


2020 ◽  
Vol 75 (10) ◽  
pp. 534-540
Author(s):  
Ayman A Ahmed ◽  
C Peter Owen

INTRODUCTION: Wear of milling burs may affect the internal fit and surface roughness of the milled crown. AIM: To assess the wear of diamond and tungsten carbide (TC) burs from milling ceramic materials and the effect on internal fit and surface roughness. METHODS: Thirty crowns of each of the two materials were milled from the same standard preparation. Diamond burs were used for a feldspathic ceramic and TC burs for zirconia. Before and after the 10th, 20th and 30th milling, diamond particle loss was counted and cutting blade changes of the TC burs measured. Internal fit was measured using a silicone replica technique and surface roughness by 3D laser microscope. RESULTS: An average 26% loss of diamond particles occurred after 30 crowns, resulting in a 6% decrease in internal luting space and a 21% decrease in surface roughness. Wear of the TC burs resulted in a 13% decrease in the luting space, and a 16% increase in surface roughness. CONCLUSION: The wear of milling burs reduces the luting space, and the milling parameters must be adjusted to compensate for this. Surface roughness is affected by bur type: with diamond burs it decreased, and increased with TC burs.


2020 ◽  
Vol 195 ◽  
pp. 109026 ◽  
Author(s):  
Pawan Kumar ◽  
Brijnandan S. Dehiya ◽  
Anil Sindhu ◽  
Ravinder Kumar ◽  
Catalin I. Pruncu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document