scholarly journals Equilibrium solubility measurement of ionizable drugs – consensus recommendations for improving data quality

ADMET & DMPK ◽  
2016 ◽  
Vol 4 (2) ◽  
pp. 117 ◽  
Author(s):  
Alex Avdeef ◽  
Elisabet Fuguet ◽  
Antonio Llinàs ◽  
Clara Ràfols ◽  
Elisabeth Bosch ◽  
...  

<p class="ADMETabstracttext">This commentary addresses data quality in equilibrium solubility measurement in aqueous solution. Broadly discussed is the “gold standard” shake-flask (SF) method used to measure equilibrium solubility of ionizable drug-like molecules as a function of pH. Many factors affecting the quality of the measurement are recognized. Case studies illustrating the analysis of both solution and solid state aspects of solubility measurement are presented. Coverage includes drug aggregation in solution (sub-micellar, micellar, complexation), use of mass spectrometry to assess aggregation in saturated solutions, solid state characterization (salts, polymorphs, cocrystals, polymorph creation by potentiometric method), solubility type (water, buffer, intrinsic), temperature, ionic strength, pH measurement, buffer issues, critical knowledge of the pK<sub>a</sub>, equilibration time (stirring and sedimentation), separating solid from saturated solution, solution handling and adsorption to untreated surfaces, solubility units, and tabulation/graphic presentation of reported data. The goal is to present cohesive recommendations that could lead to better assay design, to result in improved quality of measurements, and to impart a deeper understanding of the underlying solution chemistry in suspensions of drug solids.</p>

10.2196/20738 ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. e20738
Author(s):  
Sylvia Cho ◽  
Ipek Ensari ◽  
Chunhua Weng ◽  
Michael G Kahn ◽  
Karthik Natarajan

Background There is increasing interest in reusing person-generated wearable device data for research purposes, which raises concerns about data quality. However, the amount of literature on data quality challenges, specifically those for person-generated wearable device data, is sparse. Objective This study aims to systematically review the literature on factors affecting the quality of person-generated wearable device data and their associated intrinsic data quality challenges for research. Methods The literature was searched in the PubMed, Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and Google Scholar databases by using search terms related to wearable devices and data quality. By using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, studies were reviewed to identify factors affecting the quality of wearable device data. Studies were eligible if they included content on the data quality of wearable devices, such as fitness trackers and sleep monitors. Both research-grade and consumer-grade wearable devices were included in the review. Relevant content was annotated and iteratively categorized into semantically similar factors until a consensus was reached. If any data quality challenges were mentioned in the study, those contents were extracted and categorized as well. Results A total of 19 papers were included in this review. We identified three high-level factors that affect data quality—device- and technical-related factors, user-related factors, and data governance-related factors. Device- and technical-related factors include problems with hardware, software, and the connectivity of the device; user-related factors include device nonwear and user error; and data governance-related factors include a lack of standardization. The identified factors can potentially lead to intrinsic data quality challenges, such as incomplete, incorrect, and heterogeneous data. Although missing and incorrect data are widely known data quality challenges for wearable devices, the heterogeneity of data is another aspect of data quality that should be considered for wearable devices. Heterogeneity in wearable device data exists at three levels: heterogeneity in data generated by a single person using a single device (within-person heterogeneity); heterogeneity in data generated by multiple people who use the same brand, model, and version of a device (between-person heterogeneity); and heterogeneity in data generated from multiple people using different devices (between-person heterogeneity), which would apply especially to data collected under a bring-your-own-device policy. Conclusions Our study identifies potential intrinsic data quality challenges that could occur when analyzing wearable device data for research and three major contributing factors for these challenges. As poor data quality can compromise the reliability and accuracy of research results, further investigation is needed on how to address the data quality challenges of wearable devices.


ADMET & DMPK ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 88-105 ◽  
Author(s):  
Christel A.S. Bergström ◽  
Alex Avdeef

Several key topics in solubility measurement and interpretation are briefly summarized and illustrated with case studies drawing on published solubility determinations as a function of pH. Featured are examples of ionizable molecules that exhibit solubility-pH curve distortion from that predicted by the traditionally used Henderson-Hasselbalch equation and possible interpretations for these distortions are provided. The scope is not exhaustive; rather it is focused on detailed descriptions of a few cases. Topics discussed are limitations of kinetic solubility, ‘brick-dust and grease-balls,’ applications of simulated and human intestinal fluids, supersaturation and the relevance of pre-nucleation clusters and sub-micellar aggregates in the formation of solids, drug-buffer/excipient complexation, hydrotropic solubilization, acid-base ‘supersolubilization,’ cocrystal route to supersaturation, as well as data quality assessment and solubility prediction. The goal is to highlight principles of solution equilibria – graphically more than mathematically – that could invite better assay design, to result in improved quality of measurements, and to impart a deeper understanding of the underlying solution chemistry in suspensions of drug solids. The value of solid state characterizations is stressed but not covered explicitly in this mini-review.


2020 ◽  
Author(s):  
Sylvia Cho ◽  
Ipek Ensari ◽  
Chunhua Weng ◽  
Michael Kahn ◽  
Karthik Natarajan

BACKGROUND There is increasing interest to reuse person-generated wearable device data for research purposes, which raises concerns about data quality. However, the literature on data quality challenges, specifically for person-generated wearable device data, is sparse. OBJECTIVE The objective of this study is to systematically review the literature on factors affecting quality of person-generated wearable device data and identify challenges associated with their secondary uses. METHODS We searched PubMed, ACM, IEEE, and Google Scholar with search terms related to wearable device and data quality. Using PRISMA guidelines, we reviewed the papers to find factors affecting the quality of wearable device data. We annotated those papers and categorized semantically similar factors. If any data quality challenges were mentioned in the study, we extracted those contents as well. RESULTS Twenty-six papers were included. We identified 3 high-level factors: device and technical, user-related, and data governance factors. Device and technical factors include problems with hardware, software, connectivity; user-related factors include device non-wear and user error; and data governance factors include lack of standardization and data accessibility issues. The identified factors potentially can lead to data quality problems such as incomplete, inaccurate, and heterogeneous data. CONCLUSIONS Our study identifies potential data quality challenges that could occur when analyzing wearable device data for research and 3 major contributing factors for these challenges. As poor data quality can compromise the reliability and accuracy of research results, further investigation is warranted on how to address data quality challenges facing wearable devices.


Author(s):  
Tran Minh Hieu ◽  
Nguyen Duong Ngoc Mai Chi

This study applied SERVQUAL scale of Parasuraman et al to measure factors affecting customer satisfaction on service quality at Vietnam Technological and Commercial Joint Stock Bank - An Giang Branch (Techcombank An Giang). The study was conducted to survey 207 customers who have been using the service at Techcombank An Giang. The survey results were analyzed by the Cronbach's Alpha reliability test method, then used Exploratory factor analysis (EFA) to verify and evaluate the scale of service quality. The results of the regression analysis show that customer's satisfaction about service quality at Techcombank An Giang includes four factors: The factor with the highest level is the Empathy with Beta = 0.253, the second of factor is the Responsibility with Beta = 0.248, ranked third in the influence level is the Tangible with Beta = 0.235, and the lowest impact level is the Reliability with Beta = 0.144. The research also uses statistical methods to describe and test the differences of demographic factors with customer's satisfactionon service quality.The analysis results show that there is no difference between customer's satisfaction on service quality and factors such as gender, age, income, number of transaction banks, regular transaction banks, and time to use the service at Techcombank An Giang. Through the research results, the author would like to propose some ideas to improve the quality of services, thereby attracting new customers and importantly, keeping traditional customers because the development orientation of Techcombank is to take care of old customers to cross sell other products of the bank. The Stud results offer a basis for the branch to identify the factors influencing customer satisfaction on their service quality, thereby having an appropriate strategy to improve customer satisfaction.


Author(s):  
Nguyễn Thị Hồng Thu ◽  
Đặng Minh Nhật ◽  
Nguyễn Hoàng Dung

Sugar palm (Arenga pinnata) is a feather palm native to tropical Asia. In Vietnam, it is named Búng Báng or Đoác and grown only on the highlands in the central or northern part of Vietnam. It is utilized for many purposes, especially for Ta Vat wine production - a characteristic and unique product of Co Tu ethnic minority. However, because of the natural fermentation used in the production, the product quality is inconsistent. The purpose of this study was to examine a new procedure of using palm sap for making Ta Vat wine. Some characteristics of the sap, which was collected at Nam Giang district, Quang Nam province are determined, proving the potential of the sap for making wine product. The quality of sap changes quickly at room temperature. At low temperature (4 - 60C), the changes in sap quality are apparently slower. Examining some factors affecting its quality during the wine fermentation process, we determined the best parameters for the fermentation process as follows: inoculum size of 3% with cell density of about 1x108 cells/ml, the addition of the extract from the bark of Ceylon ironwood (Mesua ferrea L.) 4%. Keywords: Arenga pinnata, sap, Ceylon ironwood bark, Mesua ferrea L., wine fermentation.


Sign in / Sign up

Export Citation Format

Share Document