scholarly journals Computational simulations establish a novel transducer array placement arrangement that extends delivery of therapeutic TTFields to the infratentorium of patients with brainstem gliomas

2021 ◽  
Vol 26 (6) ◽  
pp. 1045-1050
Author(s):  
Marigdalia K. Ramirez-Fort ◽  
Ariel Naveh ◽  
Shearwood McClelland III ◽  
Casey K. Gilman ◽  
Migdalia Fort ◽  
...  
2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi90-vi90
Author(s):  
Ariel Naveh ◽  
Ofir Yesharim ◽  
Ze’ev Bomzon

Abstract Tumor Treating Fields (TTFields) are an antimitotic technology utilising electric fields to disrupt mitosis in cancer cells. TTFields are currently approved by the FDA for the treatment of Glioblastoma Multiforme (GBM) and Malignant Pleural Mesothelioma (MPM). TTFields are delivered through 2 pairs of transducer arrays placed on the patient’s skin. Each pair delivers TTFields in a single direction, and the pairs are placed to provide perpendicular field. Preclinical studies show that 1V/cm is the clinical threshold for the treatment to be effective. Some types of cancers send metastases to the spinal cord and CSF, i.e. leptomeningeal disease. The purpose of this study was to find transducer array layouts that deliver TTFields to the spine at therapeutic intensities of above 1 V/cm. Computational simulations testing the delivery of TTFields to the spine were performed using the Sim4Life 4.0 (ZMT Zurich) computational platform, and the Duke 3.1 and Ella 3.0 (ITI’S, Zurich) realistic computational models of a male and female respectively. “Standard” layouts in which a pair of arrays are placed on the front and back of the patient and second pair on the lateral aspects of the patient failed to deliver TTFields at therapeutic intensities to the spinal cord. This is probably because the spinal cord is surrounded by the CSF and spine, which shunt the electric fields from reaching the spinal cord. However, field intensities above 1 V/cm were observed when delivering TTFields when both arrays were placed on the patients back, with a first array placed close to the neck, and second array placed towards the thighs. In this case, the spinal cord and surrounding CSF act as a conductive cable, directing the electric field along the spine. This novel layout opens the possibility for treating cancerous disease along the spine.


Author(s):  
Nik Ahmad Zainal Abidin ◽  
◽  
Norkharziana Mohd Nayan ◽  
Azuwa Ali ◽  
N. A. Azli ◽  
...  

This research presents a simulation analysis for the AC-DC converter circuit with a different configurations of the array connection of the piezoelectric sensor. The selection of AC-DC converter circuits is full wave bridge rectifier (FWBR), parallel SSHI (P-SSHI) and parallel voltage multiplier (PVM) with array configuration variation in series (S), parallel (P), series-parallel (SP) and parallel-series (PS). The system optimizes with different load configurations ranging from 10 kΩ to 1 MΩ. The best configuration of AC-DC converter with an appropriate array piezoelectric connection producing the optimum output of harvested power is presented. According to the simulation results, the harvested power produced by using P-SSHI converter connected with 3 parallel piezoelectric transducer array was 85.9% higher than for PVM and 15.88% higher than FWBR.


2013 ◽  
Vol 10 (9) ◽  
pp. 853-858
Author(s):  
Amrish Kumar ◽  
Dinesh Mishra ◽  
Manoj Gautam ◽  
Suresh Thareja

2021 ◽  
Vol 129 (13) ◽  
pp. 134901
Author(s):  
Sebastian Zehnter ◽  
Marco A. B. Andrade ◽  
Christoph Ament

Sign in / Sign up

Export Citation Format

Share Document