Application of rogue algorithms in the WLAN planning task

2017 ◽  
Vol 4 (3) ◽  
pp. 99-110
Author(s):  
Adam Piperzycki ◽  
Wiesław Ludwin

The aim of this article is to examine and compare swarm optimization methods in the task of planning indoor wireless networks (WLAN). For this purpose, in the process of searching for the extremum of the criterion function, which is an optimization indicator, six swarm algorithms were used: artificial bees colony, bat, bee, cuckoo, firefly, particle swarm (bird).

2016 ◽  
Vol 40 (5) ◽  
pp. 883-895 ◽  
Author(s):  
Wen-Jong Chen ◽  
Chuan-Kuei Huang ◽  
Qi-Zheng Yang ◽  
Yin-Liang Yang

This paper combines the Taguchi-based response surface methodology (RSM) with a multi-objective hybrid quantum-behaved particle swarm optimization (MOHQPSO) to predict the optimal surface roughness of Al7075-T6 workpiece through a CNC turning machining. First, the Taguchi orthogonal array L27 (36) was applied to determine the crucial cutting parameters: feed rate, tool relief angle, and cutting depth. Subsequently, the RSM was used to construct the predictive models of surface roughness (Ra, Rmax, and Rz). Finally, the MOHQPSO with mutation was used to determine the optimal roughness and cutting conditions. The results show that, compared with the non-optimization, Taguchi and classical multi-objective particle swarm optimization methods (MOPSO), the roughness Ra using MOHQPSO along the Pareto optimal solution are improved by 68.24, 59.31 and 33.80%, respectively. This reveals that the predictive models established can improve the machining quality in CNC turning of Al7075-T6.


Author(s):  
Mahdieh Adeli ◽  
Hassan Zarabadipoor

In this paper, anti-synchronization of discrete chaotic system based on optimization algorithms are investigated. Different controllers have been used for anti-synchronization of two identical discrete chaotic systems. A proportional-integral-derivative (PID) control is used and its parameters is tuned by the four optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), modified particle swarm optimization (MPSO) and improved particle swarm optimization (IPSO). Simulation results of these optimization methods to determine the PID controller parameters to anti-synchronization of two chaotic systems are compared. Numerical results show that the improved particle swarm optimization has the best result.


Author(s):  
A. S. RADHAMANI ◽  
E. BABURAJ

In recent studies we found that there are many optimization methods presented for multicore processor performance optimization, however each method is suffered from limitations. Hence in this paper we presented a new method which is a combination of bacterial Foraging Particle swarm Optimization with certain constraints named as Constraint based Bacterial Foraging Particle Swarm Optimization (CBFPSO) scheduling can be effectively implemented. The proposed Constraint based Bacterial Foraging Particle Swarm Optimization (CBFPSO) scheduling for multicore architecture, which updates the velocity and position by two bacterial behaviours, i.e. reproduction and elimination dispersal. The performance of CBFPSO is compared with the simulation results of GA, and the result shows that the proposed algorithm has pretty good performance on almost all types of cores compared to GA with respect to completion time and energy consumption.


2018 ◽  
Vol 27 (4) ◽  
pp. 681-697
Author(s):  
Lawrence Livingston Godlin Atlas ◽  
Kumar Parasuraman

Abstract The main objective of this study is to progress the structure and segment the images from hemorrhage recognition in retinal fundus images in ostensible. The abnormal bleeding of blood vessels in the retina which is the membrane in the back of the eye is called retinal hemorrhage. The image folders are deliberated, and the filter technique is utilized to decrease the images specifically adaptive median filter in our suggested proposal. Gray level co-occurrence matrix (GLCM), grey level run length matrix (GLRLM) and Scale invariant feature transform (SIFT) feature skills are present after filtrating the feature withdrawal. After this, the organization technique is performed, specifically artificial neural network with fuzzy interface system (ANFIS) method; with the help of this organization, exaggerated and non-affected images are categorized. Affected hemorrhage images are transpired for segmentation procedure, and in this exertion, threshold optimization is measured with numerous optimization methods; on the basis of this, particle swarm optimization is accomplished in improved manner. Consequently, the segmented images are projected, and the sensitivity is great when associating with accurateness and specificity in the MATLAB platform.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feng Qian ◽  
Mohammad Reza Mahmoudi ◽  
Hamïd Parvïn ◽  
Kim-Hung Pho ◽  
Bui Anh Tuan

Conventional optimization methods are not efficient enough to solve many of the naturally complicated optimization problems. Thus, inspired by nature, metaheuristic algorithms can be utilized as a new kind of problem solvers in solution to these types of optimization problems. In this paper, an optimization algorithm is proposed which is capable of finding the expected quality of different locations and also tuning its exploration-exploitation dilemma to the location of an individual. A novel particle swarm optimization algorithm is presented which implements the conditioning learning behavior so that the particles are led to perform a natural conditioning behavior on an unconditioned motive. In the problem space, particles are classified into several categories so that if a particle lies within a low diversity category, it would have a tendency to move towards its best personal experience. But, if the particle’s category is with high diversity, it would have the tendency to move towards the global optimum of that category. The idea of the birds’ sensitivity to its flying space is also utilized to increase the particles’ speed in undesired spaces in order to leave those spaces as soon as possible. However, in desirable spaces, the particles’ velocity is reduced to provide a situation in which the particles have more time to explore their environment. In the proposed algorithm, the birds’ instinctive behavior is implemented to construct an initial population randomly or chaotically. Experiments provided to compare the proposed algorithm with the state-of-the-art methods show that our optimization algorithm is one of the most efficient and appropriate ones to solve the static optimization problems.


Sign in / Sign up

Export Citation Format

Share Document