Etoposide – inhalable fraction. Determination method in workplace air

2018 ◽  
Vol 34 (2(96)) ◽  
pp. 161-173
Author(s):  
Marzena Bonczarowska ◽  
Karolina Mikołajewska ◽  
Sławomir Brzeźnicki

Etoposide at room temperature is a fine white to yellow-brown crystalline odorless powder. Etoposide is one of the most widely used cytotoxic drugs and has strong antitumour activity in cases of small-cell lung cancer, testicular cancer or lymphoma. Occupational exposure to etoposide (mainly via skin contact or via inhalation route) may occur among group of healthcare workers or workers employed in the production of this drug. Exposure to etoposide can cause suppression of bone marrow function and gastrointestinal symptoms such as nausea, vomiting, bronchospasm, inflammation of mucous membranes, hair loss and secondary leukemia. Agency for Research on Cancer (IARC) has classified etoposide as a compound probably carcinogenic to humans (Group 2.A) and in combination with cisplatin and bleomycin as carcinogenic to humans (Group 1). The aim of this study was to develop and validate a sensitive method for determining inhalable fraction of etoposide concentrations in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of Standard PN-EN 482. The study was performed using a liquid chromatograph with tandem mass detection (HPLC-MS/MS). All chromatographic analysis were perfomed with Supelcosil LC 18 150 × 3 mm analytical column, which was eluted with a mixture of methanol and water with 0.1% of formic acid. This method is based on collecting inhalable fraction of etoposide on glass fiber filter, extracting with a mixture of methanol: water with addition of formic acid (0.1%), and chromatographic determining of resulted solution with HPLC-MS/MS technique. The average extraction efficiency of etoposide from filters was 90%. The method is linear (r = 0.9985) within the investigated working range from 0.036 μg/ml to 1.44 μg/ml. The calculated limit of detection (LOD) and the limit of quantification (LOQ) were 0.0086 and 0.0026 μg/ml, respectively. The analytical method described in this paper, thanks to HPLC MS/MS technique, enables specific and selective determination of inhalable fraction of etoposide in workplace air in the presence of other compounds at concentrations from 0.0001 mg/m3 (1/20 proposed MAC value). The method is precise, accurate and it meets the criteria for measuring chemical agents listed in Standard No. EN 482. The method can be used for assessing occupational exposure to etoposide and associated risk to workers’ health. The developed method of determining etoposide has been recorded as an analytical procedure (see appendix).

2017 ◽  
Vol 33 (3(93)) ◽  
pp. 141-150
Author(s):  
Marzena Bonczarowska ◽  
Sławomir Brzeźnicki

Cyclophosphamide (CP) at room temperature is a fine white crystalline odorless powder. It is used mainly as a cytostatic drug in anticancer therapy. Acute exposure to CP can cause bone marrow damage, hemorrhagic cystitis and cardiomyopathy. Cyclophosphamide has a negative influence on reproducibility in humans. International Agency for Research on Cancer (IARC) has classified CP as carcinogenic to humans (Group 1). In the European Union, cyclophosphamide has been classified as carcinogenic category 1.A and mutagenic category 2.B. Occupational exposure to CP may occur during its production and during preparation and application of CP in oncology wards. Cyclophosphamide may be absorbed mainly by inhalation or skin contact. The aim of this study was to develop and validate a sensitive method for determining cyclophosphamide concentrations in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of Standard No. PN-EN 482. The study was performed using a liquid chromatograph with a tandem mass detection (HPLC-MS/MS). All chromatographic analyses were performed with Supelcosil LC 18 150 × 3 mm analytical column, which was eluted with a mixture of methanol and water with 0.1% of formic acid. The method was based on collecting CP on glass fiber filter, extracting with a mixture of methanol: water with addition of formic acid (0.1%), and chromatographic determining of resulted solution with HPLC-MS/MS technique. The average extraction efficiency of CP from filters was 90%. The method was linear (r = 0.999) within the investigated working range 0.01–0.5 μg/ml. The calculated limit of detection (LOD) and the limit of quantification (LOQ) were 0.00046 and 0.0015 μg/ml, respectively. The analytical method described in this paper, thanks to HPLC MS/MS technique, enables specific and selective determination of CP in workplace air in the presence of other compounds at concentrations from 0.0004 mg/m3 (1/25 proposed MAC value). The method precise, accurate and it meets the criteria for measuring chemical agents listed in Standard No. PN-EN 482. The method can be used for assessing occupational exposure to CP and associated risk to workers’ health. The developed method of determining CP has been recorded as an analytical procedure (see appendix).


2019 ◽  
Vol 35 (1(99)) ◽  
pp. 61-76
Author(s):  
Marek Zieliński ◽  
Ewa Twardowska ◽  
Małgorzata Kucharska

Ethylenediamine (EDA) is a colorless, viscous liquid with ammonia-like odor. It is used as an intermediate in manufacture of chelating agents (EDTA), fungicide, poliamide and formaldehyde-urea resins, surfactants, corrosion inhibitors, emulsifying agents and stabiliser of rubber products. EDA may cause irritation of upper respiratory tract, eye and skin. Occupational exposure to EDA may lead to alergic reactions and asthma. EDA is not classified as carcinogennic to humans. The aim of this study was to develop and validate a sensitive method for determining hydrazine concentrations in the workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of Standard No. PN-EN 482. The study was performed using a liquid chromatograph with spectrophotometric detection. All chromatographic analysis were performed with Supelcosil LC-18 (150 × 3 mm, 5 µm) analytical column, which was eluted with mixture of acetonitrile and water (6:4 v/v). The method is based on the collection of EDA on silica gel impregnated with sulfuric acid, extraction with mixture of acetonitrile and water (62:38 v/v), derivatization of extracted compound with 9-fluorenylmethyl chloroformate and chromatographic determination of resulted solution with HPLC technique. The method is linear (r = 0.9994) within the investigated working range 0.1–2 μg/ml (2–40 mg/m3 for a 10-L air sample). Calculated limit of detection (LOD) and limit of quantification (LOQ) were 0.04 μg/ml and 0.13 μg/ml, respectively. The average extraction efficiency of EDA from silica gel was 86% and samples stored in refrigerator are stable for 10 days. The analytical method described in this paper enables determination of EDA in workplace air. The method is precise, accurate and it meets the criteria for procedures for measuring chemical agents listed in Standard No. PN-EN 482. The method can be used for assessing occupational exposure to EDA and associated risk to workers’ health. The developed method of determining EDA has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2019 ◽  
Vol 35 (1(99)) ◽  
pp. 59-74
Author(s):  
Sławomir Brzeźnicki ◽  
Marzena Bonczarowska

Pentachlorophenol (PCF) in room temperature is a crystalline solid with phenol-like odor. It is soluble in most organic solvents (diethyl ether, acetone, carbon tetrachloride, methanol). It is slightly soluble in water. Pentachlorophenol is used as a fungicide, insecticide and as non-selective herbicide (defoliant) in cotton crops. It is also used as antimicrobial agent in leather, paper and textile industry. It has been widely used as wood preservative in wood and construction industry. Occupational exposure to pentachlorophenol may cause irritation of mucous membranes of the eyes and the upper respiratory tract and skin lesions. It may also lead to changes in the central nervous system like headache, insomnia, vertigo and depression. Acute poisoning may cause pulmonary edema, cardio-respiratory disorder and even death. Pentachlorophenol is also suspected to be carcinogenic to humans. The aim of this study was to develop and validate a sensitive method for determining pentachlorophenol concentrations in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of Standard No. PN-EN 482. The study was performed using a liquid chromatograph with spectrophotometric detection. All chromatographic analysis were performed with Zorbax SB-CN 250 × 4.6 mm analytical column, which was eluted with mixture of 0.1% phosphoric acid in acetonitrile and 0.1% phosphoric acid in water (6: 4 v/v). The method is based on the collection of pentachlorophenol on XAD 7 resin preceded by a glass fiber filter, extraction with methanol and chromatographic determination of resulted solution with HPLC technique. The method is linear (r = 0.9997) within the investigated working range 0.625–12.5 μg/ml (0.05–1.0 mg/m3 for a 25-L air sample). The calculated limit of detection (LOD) and limit of quantification (LOQ) were 0.014 μg/ml and 0.048 μg/ml, respectively. The average extraction efficiency of pentachlorophenol from filter and XAD 7 amounted to 95% and samples stored in refrigerator are stable for 14 days. The analytical method described in this paper enables determination of pentachlorophenol in workplace air. The method is precise, accurate and it meets the criteria for procedures for measuring chemical agents listed in Standard No. PN-EN 482. The method can be used for assessing occupational exposure to pentachlorophenol and associated risk to workers’ health. The developed method of determining pentachlorophenol has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2019 ◽  
Vol 35 (1(99)) ◽  
pp. 19-28
Author(s):  
Anna Jeżewska ◽  
Agnieszka Woźnica

Chlorobenzene is a colorless, flammable liquid that has an almond-like odor. It is used in industry as a solvent: resins, paints and fats, raw material for the production of plastics, as well as for the production of phenol, aniline and nitrobenzene. Occupational exposure to chlorobenzene vapors can occur through inhalation, absorption through the skin or ingestion. Harmful if inhaled, causes skin irritation. Long-term exposure affects the central nervous system. The aim of this study was an amendment to the PN-Z-04022- 03:2001 withdrawn from the Polish set of standards, and validate method for determination concentrations of chlorobenzene in the workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of the standard PN-EN 482. The study was performed using a gas chromatograph (GC) with a flame ionization detector (FID) equipped with a capillary column HP-5 (30 m x 0.32 mm, 0.25 μm). This method is based on the adsorption of chlorobenzene vapors on activated charcoal, desorption with carbon disulfide, and analyzed by GC-FID. Application of HP-5 column allows selective determination of chlorobenzene in a presence of carbon disulfide, aniline, phenol and nitrobenzene. The measurement range was 2.3 ÷ 46 mg/m3 for a 15 l air sample. Limit of detection: 6.75 ng/ml and limit of quantification: 20.25 ng/ml. Analytical method described in this paper enables selective determination of chlorobenzene in workplace atmosphere in presence of other solvents at concentrations from 2.3 mg/m3 (1/10 MAC value). The method is characterized by good precision and accuracy and meets the criteria for the performance of procedures for the measurement of chemical agents, listed in EN 482. The method may be used for the assessment of occupational exposure to chlorobenzene and the associated risk to workers’ health. The developed method of determining chlorobenzene has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


Author(s):  
Anna Jeżewska

Propane-1,3-sultone (PS) is an alkylating substance used in the production of polymers, fungicides, insecticides, dyes, and detergents. It is absorbed into the human body by inhalation, digestion, and through the skin; it is also a possible carcinogen. Occupational exposure to this substance may occur on industrial or laboratory contact. In Poland, the maximum allowable concentration (MAC) for PS in workplace air is 7 µg/m3. The paper presents a method for determination of PS in workplace air using a gas chromatograph coupled with a mass spectrometer (GC-MS). Air containing PS is passed through a glass tube containing a glass fiber filter and two layers of silica gel. The substance is washed with acetonitrile and the solution obtained analysed using GC-MS. The measuring range for an air sample of 360 L is 0.7 ÷ 14 µg/m3. The limit of detection (LOD) is 13 ng/m3, limit of quantification (LOQ) is 40 ng/m3.


2017 ◽  
Vol 33 (3(93)) ◽  
pp. 141-150
Author(s):  
Marzena Bonczarowska ◽  
Sławomir Brzeźnicki

2,2-Bis(4-hydroxyphenyl)propane (bisphenol A BPA) is a substance in a form of a solid crystals or flakes with a mild phenolic odor. BPA is commonly used in the production of epoxide, polycarbonate or polysulfone resins, glues, breaks fluids or as a flame retardants and fungicides. Exposure to BPA can cause irritation of skin, BPA can also act as a nefro or hepatotoxic factor and upper respiratory tract or mucous membranes of the eye. BPA has a negative effects on human fertility. The aim of this study was to develop and validate a sensitive method for determining BPA concentrations in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of Standard No. PN-EN 482. The study was performed using a liquid chromatograph with spectrophotometric (UV-VIS) and spectrofluorimetric (FLD) detection. All chromatographic analyses were performed with Supelcosil LC 18 (150 × 3 mm) analytical column, which was eluted with mixture of acetonitrile and water (1:1). This method was based on collecting BPA on glass fiber filter, extracting with acetonitrile, and chromatographic determining resulted solution with HPLC technique. The average extraction efficiency of BPA from filters was 90%. The method was linear (r = 0.9996) within the investigated working range 0.125–5 mg/m3 for a 720-L air sample. The calculated limit of detection (LOD) and the limit of quantification (LOQ) was to 0.02 μg/ml (UV-VIS) and 0.013 μg/ml (FLD), and 0.068 μg/ml (UV-VIS) and 0.042 μg/ml (FLD), respectively. The analytical method described in this paper enables specific and selective determination of BPA in workplace air in presence of other compounds. The method is precise, accurate and it meets the criteria for measuring chemical agents listed in Standard No. PN-EN 482+A1:2016-01. The method can be used for assessing occupational exposure to BPA and associated risk to workers’ health. The developed method of determining BPA has been recorded as an analytical procedure (see appendix).


2019 ◽  
Vol 35 (1(99)) ◽  
pp. 45-57
Author(s):  
Marzena Bonczarowska ◽  
Patryk Piątek ◽  
Sławomir Brzeźnicki

Anhydrous hydrazine in room temperature is colorless fuming oily liquid with ammonia-like odor. It is used in various industries for electrolytic plating of metals on glass and plastics, as a chemical intermediate for the synthesis of pesticides, insecticides, medicines and days. It is used also as water treatment agent in energy industry (corrosion inhibitor), rocket propellant and as explosives material. Long term exposure to hydrazine may cause to skin irritation and allergic reactions. Diluted aqueous solutions of hydrazine may be irritating for skin, eye and respiratory tract. Epidemiologic studies shows that chronic exposure to hydrazine may cause cancer. In European Union hydrazine is classified as a carcinogenic substance (cat. 1B). Experts from International Agency for Research on Cancer (IARC) have classified hydrazine as a compound probably carcinogenic to humans (Group 2A). Due to decreasing of MAC value for hydrazine in Poland it was necessary to develop and validate a sensitive method for determining hydrazine concentrations in the workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of Standard No. PN-EN 482. The study was performed using a liquid chromatograph with spectrophotometric detection. All chromatographic analysis were performed with Discovery LC-18 150 × 2,1 mm analytical column, which was eluted with mixture of acetonitrile and water (6:4 v/v). The method is based on the collection of hydrazine on glass fiber filter impregnated with sulfuric acid, extraction with mixture of sodium dihydrogen phosphate and EDTA, derivatization of extracted compound with benzaldehyde and chromatographic determination of resulted solution with HPLC technique. The method is linear (r = 0.9989) within the investigated working range 0.15–3.5 μg/ml (0.00125–0.029 mg/m3 for a 240-L air sample). Calculated limit of detection (LOD) and limit of quantification (LOQ) were 0.0007 μg/ml and 0.0023 μg/ml, respectively. The average extraction efficiency of hydrazine from filters was 97% and samples stored in refrigerator are stable for 14 days. The analytical method described in this paper enables determination of hydrazine in workplace air. The method is precise, accurate and it meets the criteria for procedures for measuring chemical agents listed in Standard No. PN-EN 482. The method can be used for assessing occupational exposure to hydrazine and associated risk to workers’ health. The developed method of determining hydrazine has been recorded as an analytical procedure (see appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2019 ◽  
Vol 35 (1(99)) ◽  
pp. 5-18
Author(s):  
Anna Jeżewska ◽  
Agnieszka Woźnica

But-2-enal (crotonaldehyde) is a colourless liquid with an unpleasant suffocating odour. But-2-enal occurs naturally in food. It is mainly used for the production of sorbic acid, a food preservative. But-2-enal is a very toxic, highly irritating and allergenic substance – it is suspected of causing genetic defects. The aim of the study was to develop a method for determination of but-2-enal, which will enable determination of concentrations of this substance in the workplace air in the range from 1/10 to 2 MAC values. The tests were performed using a liquid chromatograph (HPLC) with a diode array detector (DAD), equipped with an Ultra C18 column (250 x 4.6 mm; 5 μm). The method consists in retaining the but-2-enal on a silica gel coated with 2,4-dinitrophenylhydrazine. The sample is extracted with acetonitrile and analyzed by HPLC. Validation of the method was carried out in accordance with the requirements of the European standard EN 482. The measuring range of the method is from 0.1 to 2 mg/m3 for a 12 l sample of air. The following validation parameters were obtained: limit of detection: 1.26 ng/ml (0.21 μg/m3), limit of quantification: 3.77 ng/ml (0.63 μg/m3), the overall accuracy of the method: 5.08%, expanded uncertainty: 22%. The developed analytical method enables selective determination of but-2-enal in workplace air at concentrations ranging from 0.1 mg/m3, i.e. from 1/10 of the MAC value in the presence of co-occurring substances. The method is characterized by good precision and accuracy and meets the requirements of the European standard PN-EN 482 for procedures for determination of chemical agents. The developed method of determining but-2-enal has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2019 ◽  
Vol 36 (2(100)) ◽  
pp. 47-59
Author(s):  
Agnieszka Woźnica

Dimethyl phthalate (DMP) is a colourless liquid with a slight aromatic odour. It is used in industry as a plasticizer of plastics, as an ingredient of fragrances in the production of cosmetics and detergents. Occupational exposure to DMP can occur through inhalation, or ingestion. The aim of this study was to validate a method for determining DMP concentration in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of standard PN-EN 482. The study was performed using a gas chromatograph (GC) with a flame ionization detector (FID) equipped with a capillary column HP-INNOWAX (60 m x 0.25 mm, 0.15 µm). This method is based on the sorption of dimethyl phthalate vapours on a glass microfiber filter, desorption with ethanol, and analyzed by GC-FID. The average desorption efficiency of DMP from filter was 98%. Application of HP-INNOWAX column allows selective determination of DMP in the presence of other solvents. The measurement range was 0.5 – 10 mg/m3 for a 120-L air sample. Limit of detection: 0.02 µg/ml and limit of quantification: 0.06 µg/ml. The analytical method described in this paper enables a selective determination of DMP in workplace air in the presence of other solvents at concentrations from 0.5 mg/m3 (1/10 MAC value). The method is characterized by good precision and accuracy and meets the criteria for the performance of procedures for the measurement of chemical agents, listed in EN 482. The method may be used for the assessment of occupational exposure to DMP and the associated risk to workers’ health. The developed method of determining DMP has been recorded as an analytical procedure (see appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2013 ◽  
Vol 634-638 ◽  
pp. 1586-1590
Author(s):  
Su Fang Wang ◽  
Shou Jie Zhang ◽  
Chun Hong Dong ◽  
Guo Qing Wang ◽  
Jun Feng Guo ◽  
...  

A method for simultaneous determination of residuals of four herbicides and pesticides, simazine, carboxin, diflubenzuron and rotenone, in Chinese green tea was developed. In the proposed method, the tea powder was placed in a centrifuge tube with a plug, extracted in saturated aqueous sodium chloride solution and acetonitrile, agitated using vortex oscillator, and then centrifuged 5 min at 4000 rpm. The supernatant solution was purified by primary secondary amine (PSA) sorbent, C18 power, and graphitized carbon black powder, respectively. Then the purified extracts were dissolved with acetonitrile:0.1% formic acid aqueous solution (40:60, V/V) and agitated, filtered using a syringe with 0.22 μm nylon filter prior to UPLC-MS/MS analysis. The UPLC analysis was performed on an ACQUITY UPLC® HSS T3 column (2.1 mm×100 mm, 1.8 µm), using acetonitrile-0.1% formic acid as mobile phase with the flow rate as 0.3 mL•min-1. Injection volume was 10 µL. Positive ionization mode was applied, and the ions were monitored in the multiple reaction monitoring (MRM) mode with curtain gas 0.069 MPa, collision gas 0.052 MPa, ESI ion spray voltage 5000 V, temperature 550 °C, nebulizer gas 0.24 MPa, and turbo gas 0.28 MPa. The limit of detection (LOD) and limit of quantitation (LOQ) of the proposed method are 1 μg•kg-1and 5 μg•kg-1, respectively. The average recoveries of the four pesticides at 10, 20, and 50 µg•kg-1spiking levels range from 77.4% to 95.3%. TheSupersSuperscript textcript textrelative standard deviation (RSD) (n=6) range form 11.83% to 4.52%.


Sign in / Sign up

Export Citation Format

Share Document