Several Aspects of Nonparametric Prediction of Nonlinear Time Series

2019 ◽  
Vol 65 (1) ◽  
pp. 7-24
Author(s):  
Witold Orzeszko

Nonparametric regression is an alternative to the parametric approach, which consists of applying parametric models, i.e. models of the certain functional form with a fixed number of parameters. As opposed to the parametric approach, nonparametric models have a general form, which can be approximated increasingly precisely when the sample size grows. Hereby they do not impose such restricted assumptions about the form of the modelling dependencies and in consequence, they are more flexible and let the data speak for themselves. That is why they are a promising tool for forecasting, especially in case of nonlinear time series. One of the most popular nonparametric regression method is the Nadaraya- Watson kernel smoothing. Nowadays, there are a number of variations of this method, like the local-linear kernel estimator, which combines the local linear approximation and the kernel estimator. In the paper a Monte Carlo study is conducted in order to assess the usefulness of the kernel smoothers to nonlinear time series forecasting and to compare them with the other techniques of forecasting.

2021 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Hamdy F. F. Mahmoud

There are three common types of regression models: parametric, semiparametric and nonparametric regression. The model should be used to fit the real data depends on how much information is available about the form of the relationship between the response variable and explanatory variables, and the random error distribution that is assumed. Researchers need to be familiar with each modeling approach requirements. In this paper, differences between these models, common estimation methods, robust estimation, and applications are introduced. For parametric models, there are many known methods of estimation, such as least squares and maximum likelihood methods which are extensively studied but they require strong assumptions. On the other hand, nonparametric regression models are free of assumptions regarding the form of the response-explanatory variables relationships but estimation methods, such as kernel and spline smoothing are computationally expensive and smoothing parameters need to be obtained. For kernel smoothing there two common estimators: local constant and local linear smoothing methods. In terms of bias, especially at the boundaries of the data range, local linear is better than local constant estimator.  Robust estimation methods for linear models are well studied, however the robust estimation methods in nonparametric regression methods are limited. A robust estimation method for the semiparametric and nonparametric regression models is introduced.


2008 ◽  
Vol 18 (06) ◽  
pp. 469-480 ◽  
Author(s):  
HE NI ◽  
HUJUN YIN

Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.


Author(s):  
Ray Huffaker ◽  
Marco Bittelli ◽  
Rodolfo Rosa

In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjects of science, such as mathematical topology, relativity or particle physics. For this reason, the tools of NLTS have been confined and utilized mostly in the fields of mathematics and physics. However, many natural phenomena investigated I many fields have been revealing deterministic non linear structures. In this book we aim at presenting the theory and the empirical of NLTS to a broader audience, to make this very powerful area of science available to many scientific areas. This book targets students and professionals in physics, engineering, biology, agriculture, economy and social sciences as a textbook in Nonlinear Time Series Analysis (NLTS) using the R computer language.


Sign in / Sign up

Export Citation Format

Share Document