scholarly journals Tradução Automática na Interação com Máquinas

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
António Teixeira ◽  
José Casimiro Pereira ◽  
Pedro Goucha Francisco ◽  
Nuno Almeida

Automatic translation is usually related to conversion between human languages. Nevertheless, in human-machine interaction scenarios new forms of translation emerged. This work presents two examples. First, from the area of Natural Language Generation, is presented a data-to-text system, where data stored in a database regarding a medication plan is translated to Portuguese. As second example, is presented a system addressing the transmission of information from humans to computers, showing that automatic translation can be useful in the development of systems that use voice commands for interaction and having multilingualism as a requirement. The examples presented, part of our recent work, demonstrate the increase of application areas for automatic translation, area that received many and valuable contributions from Belinda Maia.

Informatics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 20
Author(s):  
Giovanni Bonetta ◽  
Marco Roberti ◽  
Rossella Cancelliere ◽  
Patrick Gallinari

In this paper, we analyze the problem of generating fluent English utterances from tabular data, focusing on the development of a sequence-to-sequence neural model which shows two major features: the ability to read and generate character-wise, and the ability to switch between generating and copying characters from the input: an essential feature when inputs contain rare words like proper names, telephone numbers, or foreign words. Working with characters instead of words is a challenge that can bring problems such as increasing the difficulty of the training phase and a bigger error probability during inference. Nevertheless, our work shows that these issues can be solved and efforts are repaid by the creation of a fully end-to-end system, whose inputs and outputs are not constrained to be part of a predefined vocabulary, like in word-based models. Furthermore, our copying technique is integrated with an innovative shift mechanism, which enhances the ability to produce outputs directly from inputs. We assess performance on the E2E dataset, the benchmark used for the E2E NLG challenge, and on a modified version of it, created to highlight the rare word copying capabilities of our model. The results demonstrate clear improvements over the baseline and promising performance compared to recent techniques in the literature.


Author(s):  
Nilesh Ade ◽  
Noor Quddus ◽  
Trent Parker ◽  
S.Camille Peres

One of the major implications of Industry 4.0 will be the application of digital procedures in process industries. Digital procedures are procedures that are accessed through a smart gadget such as a tablet or a phone. However, like paper-based procedures their usability is limited by their access. The issue of accessibility is magnified in tasks such as loading a hopper car with plastic pellets wherein the operators typically place the procedure at a safe distance from the worksite. This drawback can be tackled in the case of digital procedures using artificial intelligence-based voice enabled conversational agent (chatbot). As a part of this study, we have developed a chatbot for assisting digital procedure adherence. The chatbot is trained using the possible set of queries from the operator and text from the digital procedures through deep learning and provides responses using natural language generation. The testing of the chatbot is performed using a simulated conversation with an operator performing the task of loading a hopper car.


Sign in / Sign up

Export Citation Format

Share Document