safe distance
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 164)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Johann Carlo Marasigan ◽  
Gian Paolo Mayuga ◽  
Elmer Magsino

<span lang="EN-US">Traffic congestion is a constant problem for cities worldwide. The human driving inefficiency and poor urban planning and development contribute to traffic buildup and travel discomfort. An example of human inefficiency is the phantom traffic jam, which is caused by unnecessary braking, causing traffic to slow down, and eventually coming to a stop. In this study, a brake and acceleration feature (BAF) for the advanced driver assistance system (ADAS) is proposed to mitigate the effects of the phantom traffic phenomenon. In its initial stage, the BAF provides a heads-up display that gives information on how much braking and acceleration input is needed to maintain smooth driving conditions, i.e., without sudden acceleration or deceleration, while observing a safe distance from the vehicle in front. BAF employs a fuzzy logic controller that takes distance information from a light detection and ranging (LIDAR) sensor and the vehicle’s instantaneous speed from the engine control unit (ECU). It then calculates the corresponding percentage value of needed acceleration and braking in order to maintain travel objectives of smooth and safe-distance travel. Empirical results show that the system suggests acceleration and braking values slightly higher than the driver’s actual inputs and can achieve 90% accuracy overall.</span>


Author(s):  
Bożena Kukfisz ◽  
Aneta Kuczyńska ◽  
Robert Piec ◽  
Barbara Szykuła-Piec

Many countries lack clear legal requirements on the distance between buildings and petrol station facilities. The regulations in force directly determine the petrol station facilities’ required distance to buildings, and such distances are considered relevant for newly designed and reconstructed buildings. Public buildings must be located no closer than 60 m to the above-ground liquefied gas tanks and liquid gas dispensers. Still, based on engineering calculations and the applied technical measures, it is possible to determine a safe distance for buildings that are constructed, extended and reconstructed, to which superstructures are added or whose utilisation method changes. The paper presents the results of calculations devoted to determining a safe distance between public buildings and LPG filling station facilities, using selected analytical models. The analyses were carried out for the LPG gas system commonly used in petrol stations, consisting of two gas storage tanks of 4.85 m3 capacity each, and a dispenser. It is legitimate to eliminate the obligation to observe the 60 m distance between LPG filling stations and public buildings and the mandatory distance of 60 m between liquefied gas dispensers and public buildings is not justified in light of the implemented requirements to use various protections at self-service liquefied gas filling stands.


2022 ◽  
Vol 12 (2) ◽  
pp. 606
Author(s):  
Cheng-Yong Huang

Car drivers may misjudge the speed and distance of oncoming vehicles when getting out of their vehicles, leading to door crash accidents. The author invented a patented side-view mirror with distance markers to prevent such door crash accidents. Through the means of behavioural observation experiments, the main objective of this research was to observe the minimum safe distance from the rear of an approaching vehicle when opening the door of the car. The experimental results determined that the use of the Dutch Reach method yielded the shortest safe distance. Compared to the other three judgment solutions, the use of the patented side-view mirror with a distance marker to judge the minimum average safety distance had the longest distance and was the safest, meaning that it is able to help female drivers to judge the distance of approaching motorcycles from the rear and to maintain a sufficient safe distance when opening the door.


2021 ◽  
Vol 35 (6) ◽  
pp. 15-20
Author(s):  
Ohseung Kwon ◽  
Keonho Cho ◽  
Kyung-Hwan Park

In this study, the safe distance in the case of a hydrogen vehicle fire was analyzed according to the temperature distribution around a hydrogen gas jet flame formed by the thermally activated pressure relief device operation of a hydrogen storage container. The experiment was conducted while 70 MPa hydrogen gas was released from a 1.8-mm-diameter nozzle to a 1.8- × 1.8 m fire-resistant structure wall for distances of 2 and 4 m between the nozzle output and the wall. To analyze the temperature around the hydrogen gas jet flame, five fire-fighting heat-protective hood test samples, certified by the Korea Fire Institute, and temperature sensors were installed every 1 m from the center of the jet flame in the vertical direction to the direction of the flame. In the experiment, the temperature around the jet flame was measured to observe the safe distance for firefighters. The results show that the safe distances at 70°C or less, which is harmless to firefighters, were 5 m without a heat-protective hood and 3 m with a heat-protective hood. In addition, it was confirmed that the direction of the jet flame and blocking by obstacles affect the safe distance during fire-fighting and rescue activities by firefighters.


2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Zhongxian Zhu ◽  
Hongguang Lyu ◽  
Jundong Zhang ◽  
Yong Yin

A novel collision avoidance (CA) algorithm was proposed based on the modified artificial potential field (APF) method, to construct a practical ship automatic CA system. Considering the constraints of both the International Regulations for Preventing Collisions at Sea (COLREGS) and the motion characteristics of the ship, the multi-ship CA algorithm was realized by modifying the repulsive force model in the APF method. Furthermore, the distance from the closest point of approach-time to the closest point of approach (DCPA-TCPA) criterion was selected as the unique adjustable parameter from the perspective of navigation practice. Collaborative CA experiments were designed and conducted to validate the proposed algorithm. The results of the experiments revealed that the actual DCPA and TCPA agree well with the parameter setup that keeps the ship at a safe distance from other ships in complex encountering situations. Consequently, the algorithm proposed in this study can achieve efficient automatic CA with minimal parameter settings. Moreover, the navigators can easily accept and comprehend the adjustable parameters, enabling the algorithm to satisfy the demand of the engineering applications.


2021 ◽  
Vol 70 (4) ◽  
pp. 234-238
Author(s):  
Peter Kántor ◽  
Václav Procházka ◽  
Pavel Komínek

The internal carotid artery is one of the major vessels of the neck. It usually originates from the common carotid artery at the level of the 3rd–4th cervical vertebra and continues perpendicularly to the skull base in the neurovascular bundle. During common surgical procedures in the pharynx, such as adenoidectomy or tonsillectomy, the artery is usually in a safe distance from the pharyngeal wall and the risk of injury is low. However, several anatomical variations have been described that may cause medialization of the vessel closer to the pharyngeal wall, which significantly increases the risk of injury and occurrence of life-threatening haemorrhage. Keywords: internal carotid artery – tonsillectomy – haemorrhage – adenoidectomy – vascular anomalies


2021 ◽  
Author(s):  
Trung Chau

<div>Improvised Explosive Devices (IEDs) have been developed over the years across many nations around the world. IEDs used by terrorist actions and in warfare cause devastating death, injuries and damage. To protect the public, many emergency responders have to risk their lives by performing extremely hazardous tasks such as interacting with suspected IEDs. To prevent the emergency response teams from being negatively impacted by IEDs, many different kinds of response robots have been deployed in many locations worldwide – allowing first responders a safe way to interact with these menaces from a distance. This thesis contributes to the understanding of using robot arms with a Leader–Follower (LF) approach to help humans with performing dexterous operations like those which are inevitably required for manipulating IEDs remotely. The LF approach allows operators to remotely manipulate a robot arm without putting operators’ lives in danger. By physically controlling one arm from a safe distance, operators can successfully copy its movements to a second arm. As a result, we argue, this approach can be helpful for minimizing operator risk when interacting with suspicious devices while at the same time facilitating more intuitive remote control.</div>


2021 ◽  
Author(s):  
Trung Chau

<div>Improvised Explosive Devices (IEDs) have been developed over the years across many nations around the world. IEDs used by terrorist actions and in warfare cause devastating death, injuries and damage. To protect the public, many emergency responders have to risk their lives by performing extremely hazardous tasks such as interacting with suspected IEDs. To prevent the emergency response teams from being negatively impacted by IEDs, many different kinds of response robots have been deployed in many locations worldwide – allowing first responders a safe way to interact with these menaces from a distance. This thesis contributes to the understanding of using robot arms with a Leader–Follower (LF) approach to help humans with performing dexterous operations like those which are inevitably required for manipulating IEDs remotely. The LF approach allows operators to remotely manipulate a robot arm without putting operators’ lives in danger. By physically controlling one arm from a safe distance, operators can successfully copy its movements to a second arm. As a result, we argue, this approach can be helpful for minimizing operator risk when interacting with suspicious devices while at the same time facilitating more intuitive remote control.</div>


2021 ◽  
Vol 2131 (3) ◽  
pp. 032033
Author(s):  
R E Galeev ◽  
A V Soloviev ◽  
Y S Fedosenko

Abstract An approach to dynamic modeling of the predicted trajectory of movement of a displacement vessel and its continuous visualization on an electronic panel is considered, superimposed on the actual digital twin of the real scene of the environment along the course of the vessel. The hardware and software implementation of the developed approach as a decision support system for the navigator in the form of a standard option of the integrated control panel located in the wheelhouse provides an opportunity to objectively assess the safe distance to potential navigation obstacles within the ship’s course at the free distance of the vessel by means of combined visualization. As part of the organizational and technical measures to ensure the safety of navigation, the proposed innovative approach to continuous joint visualization of the digital twin of the current scene of the surrounding sailing situation and the predicted trajectory of the vessel’s movement acquires significant importance in the operation of automatic vessels as an option for the supervisor to intervene in the operation of an integrated automatic control system in complex navigating conditions.


2021 ◽  
Vol 24 (5) ◽  
pp. 89-101
Author(s):  
A. S. Shirokanev

Introduction. Diabetes mellitus is a common endocrine disease that can lead to retinal vascular damage caused by the spread of macular edema and the development of diabetic retinopathy. Currently, diabetic retinopathy is treated using retinal laser coagulation. However, since even modern systems do not demonstrate sufficient treatment efficacy, methods for providing laser coagulation support on the basis of patient data analysis are required.Aim. This paper aims to develop and study a method for estimating a safe distance between coagulates via the mathematical modeling of coagulation in order to provide laser coagulation support.Materials and methods. The problem of thermal conductivity is numerically modeled for laser action in a multilayer medium.Results. A method for estimating a safe distance between coagulates has been developed via the mathematical modeling of the thermal conductivity problem. An algorithm was established for reconstructing a three-dimensional fundus structure from OCT images. It was demonstrated that the convergence rate of the integro-interpolation method is higher than that of the finite difference method. The study revealed that the retina heats up to 45 ºС due to heat redistribution from the epithelial layer, as well as laser exposure. According to the study results, the developed method yields a safe distance of 180 µm. By increasing the delay between laser pulses by more than 10 ms, this distance can be reduced to 160 μm.Conclusion. The developed method can calculate distance corresponding to that used in medical practice. Besides safe distance, the use of this method will allow other laser coagulation parameters to be determined non-invasively: laser power and pulse duration recommended to achieve a therapeutic effect. These estimates can be used to automatically produce a preliminary laser coagulation plan to support diabetic retinopathy treatment.


Sign in / Sign up

Export Citation Format

Share Document