scholarly journals Genetic Counseling for Congenital Hearing Loss Patients-with special reference to genetic testing-

2008 ◽  
Vol 101 (10) ◽  
pp. 727-738 ◽  
Author(s):  
Shin-ichi Usami
2021 ◽  
Vol 9 ◽  
Author(s):  
Ryan Belcher ◽  
Frank Virgin ◽  
Jessica Duis ◽  
Christopher Wootten

Hearing loss is one of the most common concerns for presentation for a geneticist. Presentation prior to the age of one (congenital hearing loss), profound sensorineural hearing loss (SNHL), and bilateral hearing loss are sensitive and should raise concern for genetic causes of hearing loss and prompt referral for genetic testing. Genetic testing particularly in this instance offers the opportunity for anticipatory guidance including possible course of the hearing loss over time and also connection and evaluation for additional congenital anomalies that may be associated with an underlying syndrome vs. isolated genetic hearing loss.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Le Xie ◽  
Yue Qiu ◽  
Yuan Jin ◽  
Kai Xu ◽  
Xue Bai ◽  
...  

Genetic testing is the gold standard for exploring the etiology of congenital hearing loss. Here, we enrolled 137 Chinese patients with congenital hearing loss to describe the molecular epidemiology by using 127 gene panel testing or 159 variant testing. Sixty-three deaf children received 127 gene panel testing, while seventy-four patients received 159 variant testing. By use of 127 gene panel testing, more mutant genes and variants were identified. The most frequent mutant genes were GJB2, SLC26A4, MYO15A, CDH23, and OTOF. By analyzing the patients who received 127 gene panel testing, we found that 51 deaf children carried variants which were not included in 159 variant testing. Therefore, a large number of patients would be misdiagnosed if only 159 variant testing is used. This study highlights the advantage of 127 gene panel testing, and it suggests that broader genetic testing should be done to identify the genetic etiology of congenital hearing loss.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nozomu Matsuda ◽  
Koushi Ootsuki ◽  
Shunsuke Kobayashi ◽  
Ayaka Nemoto ◽  
Hitoshi Kubo ◽  
...  

Abstract Background Hereditary motor and sensory neuropathy, also referred to as Charcot–Marie–Tooth disease (CMT), is most often caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. This duplication causes CMT type 1A (CMT1A). CMT1A rarely occurs in combination with other hereditary neuromuscular disorders. However, such rare genetic coincidences produce a severe phenotype and have been reported in terms of “double trouble” overlapping syndrome. Waardenburg syndrome (WS) is the most common form of a hereditary syndromic deafness. It is primarily characterized by pigmentation anomalies and classified into four major phenotypes. A mutation in the SRY sex determining region Y-box 10 (SOX10) gene causes WS type 2 or 4 and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease. We describe a 11-year-old boy with extreme hypertrophic neuropathy because of a combination of CMT1A and WS type 2. This is the first published case on the co-occurrence of CMT1A and WS type 2. Case presentation The 11-year-old boy presented with motor developmental delay and a deterioration in unstable walking at 6 years of age. In addition, he had congenital hearing loss and heterochromia iridis. The neurological examination revealed weakness in the distal limbs with pes cavus. He was diagnosed with CMT1A by the fluorescence in situ hybridization method. His paternal pedigree had a history of CMT1A. However, no family member had congenital hearing loss. His clinical manifestation was apparently severe than those of his relatives with CMT1A. In addition, a whole-body magnetic resonance neurography revealed an extreme enlargement of his systemic cranial and spinal nerves. Subsequently, a genetic analysis revealed a heterozygous frameshift mutation c.876delT (p.F292Lfs*19) in the SOX10 gene. He was eventually diagnosed with WS type 2. Conclusions We described a patient with a genetically confirmed overlapping diagnoses of CMT1A and WS type 2. The double trouble with the genes created a significant impact on the peripheral nerves system. Severe phenotype in the proband can be attributed to the cumulative effect of mutations in both PMP22 and SOX10 genes, responsible for demyelinating neuropathy.


Author(s):  
Özge Çağlar ◽  
Hayal Çobanoğlu ◽  
Atilla Uslu ◽  
Akın Çayır

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bryn D. Webb ◽  
Irini Manoli ◽  
Elizabeth C. Engle ◽  
Ethylin W. Jabs

AbstractThere is a broad differential for patients presenting with congenital facial weakness, and initial misdiagnosis unfortunately is common for this phenotypic presentation. Here we present a framework to guide evaluation of patients with congenital facial weakness disorders to enable accurate diagnosis. The core categories of causes of congenital facial weakness include: neurogenic, neuromuscular junction, myopathic, and other. This diagnostic algorithm is presented, and physical exam considerations, additional follow-up studies and/or consultations, and appropriate genetic testing are discussed in detail. This framework should enable clinical geneticists, neurologists, and other rare disease specialists to feel prepared when encountering this patient population and guide diagnosis, genetic counseling, and clinical care.


2021 ◽  
pp. 014556132199683
Author(s):  
Wenqi Liang ◽  
Line Wang ◽  
Xinyu Song ◽  
Fenqi Gao ◽  
Pan Liu ◽  
...  

The bony cochlear nerve canal transmits the cochlear nerve as it passes from the fundus of the internal auditory canal to the cochlea. Stenosis of the cochlear nerve canal, defined as a diameter less than 1.0 mm in transverse diameter, is associated with inner ear anomalies and severe to profound congenital hearing loss. We describe an 11-month-old infant with nonsyndromic congenital sensorineural hearing loss with cochlear nerve canal stenosis. Next-generation sequencing revealed heterozygous mutations in MYH9 and MYH14, encoding for the inner ear proteins myosin heavy chain IIA and IIC. The patient’s hearing was rehabilitated with bilateral cochlear implantation.


Author(s):  
Jing Jing Lin ◽  
Lynn Gillam ◽  
Libby Smith ◽  
Peter Carew ◽  
Alison King ◽  
...  

Gene ◽  
2019 ◽  
Vol 703 ◽  
pp. 83-90 ◽  
Author(s):  
Nari Ryu ◽  
Min-A Kim ◽  
Deok-Gyun Choi ◽  
Ye-Ri Kim ◽  
Jong Kyung Sonn ◽  
...  

Author(s):  
Christian F. Singer ◽  
Yen Y. Tan ◽  
Christine Rappaport

AbstractAimThe aim of this study is to review the legal implications, the technology, the indications and the management of women with a familial background of breast and/or ovarian cancer.MethodsWe have reviewed the literature and national Austrian guidelines to describe the uptake of genetic counseling and the management options offered in Austria.ResultsGenetic testing for theConclusionWhile readily available country-wide counseling has led to an increase in counseling and testing, Austrian legislation mandates “non-directional counseling” resulting in a comparatively low uptake of prophylactic surgery.


Sign in / Sign up

Export Citation Format

Share Document