An unusual cause of diaphragm pacer failure in congenital central hypoventilation syndrome

Author(s):  
Ashley Kwon ◽  
Madison Lodge ◽  
J. Gordon McComb ◽  
Susan Durham ◽  
Cathy E. Shin ◽  
...  
2021 ◽  
Vol 69 ◽  
pp. 101861
Author(s):  
Christina Schreiner ◽  
Elisabeth Ralser ◽  
Christine Fauth ◽  
Ursula Kiechl-Kohlendorfer ◽  
Elke Griesmaier

2014 ◽  
Vol 116 (4) ◽  
pp. 439-450 ◽  
Author(s):  
Michael S. Carroll ◽  
Pallavi P. Patwari ◽  
Anna S. Kenny ◽  
Cindy D. Brogadir ◽  
Tracey M. Stewart ◽  
...  

Congenital central hypoventilation syndrome (CCHS) is a neurodevelopmental disorder characterized by life-threatening hypoventilation, possibly resulting from disruption of central chemosensory integration. However, animal models suggest the possibility of residual chemosensory function in the human disease. Cardioventilatory function in a large cohort with CCHS and verified paired-like homeobox 2B ( PHOX2B) mutations was assessed to determine the extent and genotype dependence of any residual chemosensory function in these patients. As part of inpatient clinical care and evaluation, 64 distinct studies from 32 infants, children, and young adults with the disorder were evaluated for physiological response to three different inspired steady-state gas exposures of 3 min each: hyperoxia [100% oxygen (O2)]; hyperoxic hypercapnia [95% O2 and 5% carbon dioxide (CO2)]; and hypoxic hypercapnia [14% O2 and 7% CO2 balanced with nitrogen (N2)]. These were followed by a hypoxia challenge consisting of five or seven breaths of N2 (100% N2). In addition, a control group of 15 young adults was exposed to all but the hypoxic challenge. Comprehensive monitoring was used to derive breath-to-breath and beat-to-beat measures of ventilatory, cardiovascular, and cerebrovascular function. On average, patients showed a residual awake ventilatory response to chemosensory challenge, independent of the specific patient PHOX2B genotype. Graded dysfunction in cardiovascular regulation was found to associate with genotype, suggesting differential effects on different autonomic subsystems. In addition, differences between cases and controls in the cerebrovascular response to chemosensory challenge may indicate alterations in cerebral autoregulation. Thus residual cardiorespiratory responses suggest partial preservation of central nervous system networks that could provide a fulcrum for potential pharmacological interventions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Karin Ljubič ◽  
Iztok Fister ◽  
Iztok Fister

Congenital central hypoventilation syndrome is a disorder predisposed by a paired-like homebox PHOX2B gene. A mutation in the PHOX2B gene is a requisite when diagnosing congenital central hypoventilation syndrome. This mutation is identified in 93–100% of diagnosed patients. The mutation regarding this disorder affects the sensors, the central controller, and the integration of the signals within the central nervous system. This, inter alia, leads to insufficient ventilation and a decrease in PaO2, as well as an increase in PaCO2. Affected children are at risk during and after the neonatal period. They suffer from hypoventilation periods which may be present whilst sleeping only or in more severe cases when both asleep and awake. It is important for clinicians to perform an early diagnosis of congenital central hypoventilation in order to prevent the deleterious effects of hypoxaemia, hypercapnia, and acidosis on the neurocognitive and cardiovascular functions. Patients need long-term management and appropriate ventilatory support for improving the qualities of their lives. This paper provides a detailed review of congenital central hypoventilation syndrome, a congenital disorder that is genetic in origin. We describe the genetic basis, the wider clinical picture, and those challenges during the diagnosis and management of patients with this condition.


1993 ◽  
Vol 74 (1) ◽  
pp. 379-387 ◽  
Author(s):  
D. Gozal ◽  
C. L. Marcus ◽  
D. Shoseyov ◽  
T. G. Keens

In children with the congenital central hypoventilation syndrome (CCHS), some patients require mechanical ventilation during sleep, whereas others need respiratory assistance even when awake. The cause of this disparity is unclear. We hypothesized that differences in peripheral chemoreceptor response (PCR) could provide an explanatory mechanism for this disparity in clinical manifestations. PCR was measured in five children with CCHS and five sex- and age-matched controls by measuring the ventilatory responses induced by 100% O2 breathing, five tidal breaths of 100% N2, and vital capacity breaths of 5% and 15% CO2 in O2 and 5% CO2–95% N2. Tidal breathing of 100% O2 resulted in similar ventilatory responses in CCHS patients and controls with various changes dependent on the method of analysis of response used. Acute hypoxia by N2 tidal breathing resulted in a 39.2 +/- 22% increase in respiratory rate in CCHS patients and a 15.1 +/- 11.1% increase in controls (P < 0.05), with similar increases in minute ventilation (VE) of 124 +/- 69% and 85 +/- 11%, respectively. Vital capacity breaths of each of the CO2-containing gas mixtures induced similar increases in VE in CCHS patients and controls. The changes in VE obtained with 15% CO2–85% O2 and with 5% CO2–95% N2 were significantly greater than those with 5% CO2–95% O2, suggesting a dose-dependent response as well as additive effects of hypercapnic and hypoxic stimuli. We conclude that the PCR, when assessed by acute hypoxia, hyperoxia, or hypercapnia, is present and intact in CCHS children who are able to sustain adequate ventilation during wakefulness.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document