scholarly journals Connecting the Dots: From Trait Vulnerability during Total Sleep Deprivation to Individual Differences in Cumulative Impairment during Sustained Sleep Restriction

SLEEP ◽  
2012 ◽  
SLEEP ◽  
2020 ◽  
Author(s):  
Erika M Yamazaki ◽  
Caroline A Antler ◽  
Charlotte R Lasek ◽  
Namni Goel

Abstract Study Objectives The amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR). Methods In total, 83 adults received two baseline nights (10–12-hour time in bed [TIB]) followed by five 4-hour TIB SR nights or 36-hour TSD and four recovery nights (R1–R4; 12-hour TIB). Neurobehavioral tests were completed every 2 hours during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights. Results TSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer and of higher efficiency and better quality than R4 recovery sleep. Conclusions PVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest that TSD and SR induce sustained, differential biological, physiological, and/or neural changes, which remarkably are not reversed with chronic, long-duration recovery sleep. Our findings have critical implications for the population at large and for military and health professionals.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A56-A56
Author(s):  
Mark McCauley ◽  
Peter McCauley ◽  
Hans Van Dongen

Abstract Introduction In commercial aviation and other operational settings where biomathematical models of fatigue are used for fatigue risk management, accurate prediction of recovery during rest periods following duty periods with sleep loss and/or circadian misalignment is critical. The recuperative potential of recovery sleep is influenced by a variety of factors, including long-term, allostatic effects of prior sleep/wake history. For example, recovery tends to be slower after sustained sleep restriction versus acute total sleep deprivation. Capturing such dynamics has proven to be challenging. Methods Here we focus on the dynamic biomathematical model of McCauley et al. (2013). In addition to a circadian process, this model features differential equations for sleep/wake regulation including a short-term sleep homeostatic process capturing change in the order of hours/days and a long-term allostatic process capturing change in the order of days/weeks. The allostatic process modulates the dynamics of the homeostatic process by shifting its equilibrium setpoint, which addresses recently observed phenomena such as reduced vulnerability to sleep loss after banking sleep. It also differentiates the build-up and recovery rates of fatigue under conditions of chronic sleep restriction versus acute total sleep deprivation; nonetheless, it does not accurately predict the disproportionately rapid recovery seen after total sleep deprivation. To improve the model, we hypothesized that the homeostatic process may also modulate the allostatic process, with the magnitude of this effect scaling as a function of time awake. Results To test our hypothesis, we added a parameter to the model to capture modulation by the homeostatic process of the allostatic process build-up during wakefulness and dissipation during sleep. Parameter estimation using previously published laboratory datasets of fatigue showed this parameter as significantly different from zero (p<0.05) and yielding a 10%–20% improvement in goodness-of-fit for recovery without adversely affecting goodness-of-fit for pre-recovery days. Conclusion Inclusion of a modulation effect of the allostatic process by the homeostatic process improved prediction accuracy in a variety of sleep loss and circadian misalignment scenarios. In addition to operational relevance for duty/rest scheduling, this finding has implications for understanding mechanisms underlying the homeostatic and allostatic processes of sleep/wake regulation. Support (if any) Federal Express Corporation


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A101-A101
Author(s):  
N Goel ◽  
E M Yamazaki ◽  
L E MacMullen ◽  
A J Ecker

Abstract Introduction Individuals show marked differential vulnerability in neurobehavioral deficits from psychosocial stress and sleep deprivation. Although changes in salivary cortisol and C-reactive protein (CRP) typically occur across total sleep deprivation (TSD) and recovery sleep, whether these biological markers during fully rested conditions predict individual differences in cognitive performance during TSD and stress remains unknown. Methods Thirty-one healthy adults (ages 27–53; mean ± SD, 35.4 ± 7.1y; 14 females) participated in a five-day experiment consisting of two 8h time-in-bed (TIB) baseline nights, followed by 39h TSD, and two 8h-10h TIB recovery nights. A modified Trier Social Stress Test (TSST) was conducted on the day of TSD to induce psychological stress. Salivary cortisol and CRP from blood were obtained at six time points during the study (pre-study, baseline, during TSD, during TSD after the TSST, after recovery, and post-study). A median split of TSD performance [total lapses (>500 ms response time) and errors] on the 10-minute Psychomotor Vigilance Test (PVT) defined cognitively resilient (n=15) and cognitively vulnerable (n=16) groups. Repeated measures ANOVA and post-hoc comparisons corrected for multiple testing, examined cortisol and CRP across time points between groups. Results In both cognitively resilient and vulnerable individuals, cortisol increased with TSD compared to baseline in the morning and decreased with TSD + psychological stress in the afternoon compared to TSD alone. By contrast, there were no significant changes in CRP levels throughout the experiment. In addition, there were no significant time*group interactions in cortisol or CRP levels. Conclusion Salivary cortisol increased with TSD compared to baseline and showed a time-of-day effect with stress during TSD. Notably, cortisol and CRP did not differ between cognitively resilient and vulnerable individuals across TSD, psychological stress or recovery sleep and thus are not reliable biomarkers for predicting performance under these conditions. Support NASA NNX14AN49G.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Eva‐Maria Elmenhorst ◽  
Eva Hennecke ◽  
Denise Lange ◽  
Judith Fronczek ◽  
Andreas Bauer ◽  
...  

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A4-A4
Author(s):  
Brieann Satterfield ◽  
Darian Lawrence-Sidebottom ◽  
Michelle Schmidt ◽  
Jonathan Wisor ◽  
Hans Van Dongen

Abstract Introduction The activity-regulated cytoskeleton associated protein (ARC) gene is an immediate early gene that is involved in synaptic plasticity. Recent evidence from a rodent model suggests that Arc may also be involved in sleep homeostasis. However, little is known about the molecular mechanisms regulating the sleep homeostat. In humans, sleep homeostasis is manifested by a marked increase in slow wave sleep (SWS) following acute total sleep deprivation (TSD). There are large, trait individual differences in the magnitude of this SWS rebound effect. We sought to determine whether a single nucleotide polymorphism (SNP) of the ARC gene is associated with individual differences in SWS rebound following TSD. Methods 64 healthy normal sleepers (ages 27.2 ± 4.8y; 32 females) participated in one of two in-laboratory TSD studies. In each study, subjects had a baseline day with 10h sleep opportunity (TIB 22:00–08:00) which was followed by 38h TSD. The studies concluded with 10h recovery sleep opportunity (TIB 22:00–08:00). Baseline and recovery sleep were recorded polysomnographically and scored visually by a trained technician. Genomic DNA was extracted from whole blood. The ARC c.*742 + 58C>T non-coding SNP, rs35900184, was assayed using real-time PCR. Heterozygotes and T/T homozygotes were combined for analysis. The genotype effect on time in SWS was assessed using mixed-effects ANOVA with fixed effects for ARC genotype (C/C vs. T carriers), night (baseline vs. recovery), and their interaction, controlling for study. Results The genotype distribution in this sample – C/C: 41; C/T: 17; T/T: 6 – did not vary significantly from Hardy-Weinberg equilibrium. There was a significant interaction between ARC genotype and night (F1,62=7.27, p=0.009). Following TSD, T allele carriers exhibited 47.6min more SWS compared to baseline, whereas C/C homozygotes exhibited 62.3min more SWS compared to baseline. There was no significant difference in SWS between genotypes at baseline (F1,61=0.69, p=0.41). Conclusion ARC T allele carriers exhibited an attenuated SWS rebound following TSD compared to those homozygous for the C allele. This suggests that the ARC SNP is associated with trait individual differences related to sleep homeostasis, and may thus influence molecular mechanisms involved in long-term memory. Support (if any) ONR N00014-13-1-0302, NIH R21CA167691, and USAMRDC W81XWH-18-1-0100.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A16-A17
Author(s):  
E M Yamazaki ◽  
K M Rosendahl-Garcia ◽  
L E MacMullen ◽  
A J Ecker ◽  
J N Kirkpatrick ◽  
...  

Abstract Introduction There are substantial individual differences (resilience and vulnerability) in neurobehavioral performance from psychosocial stress and sleep loss. However, the time course of heart rate variability (HRV) across baseline, total sleep deprivation (TSD), the combination of TSD + psychological stress, and recovery has not been investigated; in addition, it remains unknown whether HRV and blood pressure (BP) differ in resilient vs. vulnerable individuals and predict individual differences in cognitive performance. Methods Thirty-one healthy adults (ages 27–53; mean±SD, 35.4±7.1y; 14 females) participated in a five-day experiment consisting of two 8h time-in-bed (TIB) baseline nights, 39h TSD, and two 8h-10h TIB recovery nights. A modified Trier Social Stress Test (TSST) induced psychological stress on the TSD day. Systolic and diastolic BP and HRV (derived from echocardiographic R-R interval) were obtained at six time points (pre-study, baseline, during TSD, during TSD after the TSST, after recovery, and post-study). Cognitively resilient (n=15) and vulnerable (n=16) groups were defined by a median split on 10-minute Psychomotor Vigilance Test (PVT) TSD performance [total lapses (>500ms response time) and errors]. Repeated measures ANOVA and post-hoc comparisons corrected for multiple testing, examined BP and HRV across time points between groups. Results HRV showed a significant time*group interaction: while resilient individuals had significantly lower HRV at pre-study compared to vulnerable individuals, their HRV increased above that of vulnerable individuals with TSD and with TSD + psychological stress. By contrast, systolic and diastolic BP did not show significant time*group interactions and did not predict cognitive vulnerability during TSD. Conclusion HRV differed between resilient and vulnerable individuals across TSD, psychological stress and recovery sleep and predicted individual differences in cognitive performance, whereby lower HRV during full-rested conditions predicted resilience to TSD and TSD + psychological stress. HRV, but not BP, is a reliable biomarker of sleep deprivation, psychological stress, and neurobehavioral vulnerability. Support NASA NNX14AN49G.


2014 ◽  
Vol 2 (9) ◽  
pp. e12129 ◽  
Author(s):  
Eric Chern-Pin Chua ◽  
Sing-Chen Yeo ◽  
Ivan Tian-Guang Lee ◽  
Luuan-Chin Tan ◽  
Pauline Lau ◽  
...  

SLEEP ◽  
2017 ◽  
Vol 40 (suppl_1) ◽  
pp. A56-A57
Author(s):  
E Hennecke ◽  
D Lange ◽  
J Fronczek ◽  
A Bauer ◽  
D Aeschbach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document