scholarly journals Replacement of Unknown Words Using an Attention Model in Japanese to English Neural Machine Translation

2018 ◽  
Vol 25 (5) ◽  
pp. 511-525
Author(s):  
Saki Ibe ◽  
Yoshitatsu Matsuda ◽  
Kazunori Yamaguchi
Author(s):  
Jie Zhou ◽  
Ying Cao ◽  
Xuguang Wang ◽  
Peng Li ◽  
Wei Xu

Neural machine translation (NMT) aims at solving machine translation (MT) problems using neural networks and has exhibited promising results in recent years. However, most of the existing NMT models are shallow and there is still a performance gap between a single NMT model and the best conventional MT system. In this work, we introduce a new type of linear connections, named fast-forward connections, based on deep Long Short-Term Memory (LSTM) networks, and an interleaved bi-directional architecture for stacking the LSTM layers. Fast-forward connections play an essential role in propagating the gradients and building a deep topology of depth 16. On the WMT’14 English-to-French task, we achieve BLEU=37.7 with a single attention model, which outperforms the corresponding single shallow model by 6.2 BLEU points. This is the first time that a single NMT model achieves state-of-the-art performance and outperforms the best conventional model by 0.7 BLEU points. We can still achieve BLEU=36.3 even without using an attention mechanism. After special handling of unknown words and model ensembling, we obtain the best score reported to date on this task with BLEU=40.4. Our models are also validated on the more difficult WMT’14 English-to-German task.


2018 ◽  
Vol 6 ◽  
pp. 145-157 ◽  
Author(s):  
Zaixiang Zheng ◽  
Hao Zhou ◽  
Shujian Huang ◽  
Lili Mou ◽  
Xinyu Dai ◽  
...  

Existing neural machine translation systems do not explicitly model what has been translated and what has not during the decoding phase. To address this problem, we propose a novel mechanism that separates the source information into two parts: translated Past contents and untranslated Future contents, which are modeled by two additional recurrent layers. The Past and Future contents are fed to both the attention model and the decoder states, which provides Neural Machine Translation (NMT) systems with the knowledge of translated and untranslated contents. Experimental results show that the proposed approach significantly improves the performance in Chinese-English, German-English, and English-German translation tasks. Specifically, the proposed model outperforms the conventional coverage model in terms of both the translation quality and the alignment error rate.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Benyamin Ahmadnia ◽  
Bonnie J. Dorr ◽  
Parisa Kordjamshidi

Neural Machine Translation (NMT) systems require a massive amount of Maintaining semantic relations between words during the translation process yields more accurate target-language output from Neural Machine Translation (NMT). Although difficult to achieve from training data alone, it is possible to leverage Knowledge Graphs (KGs) to retain source-language semantic relations in the corresponding target-language translation. The core idea is to use KG entity relations as embedding constraints to improve the mapping from source to target. This paper describes two embedding constraints, both of which employ Entity Linking (EL)---assigning a unique identity to entities---to associate words in training sentences with those in the KG: (1) a monolingual embedding constraint that supports an enhanced semantic representation of the source words through access to relations between entities in a KG; and (2) a bilingual embedding constraint that forces entity relations in the source-language to be carried over to the corresponding entities in the target-language translation. The method is evaluated for English-Spanish translation exploiting Freebase as a source of knowledge. Our experimental results show that exploiting KG information not only decreases the number of unknown words in the translation but also improves translation quality.


2020 ◽  
Vol E103.D (3) ◽  
pp. 684-694
Author(s):  
Mingming YANG ◽  
Min ZHANG ◽  
Kehai CHEN ◽  
Rui WANG ◽  
Tiejun ZHAO

Author(s):  
Ren Qing-Dao-Er-Ji ◽  
Yila Su ◽  
Nier Wu

With the development of natural language processing and neural machine translation, the neural machine translation method of end-to-end (E2E) neural network model has gradually become the focus of research because of its high translation accuracy and strong semantics of translation. However, there are still problems such as limited vocabulary and low translation loyalty, etc. In this paper, the discriminant method and the Conditional Random Field (CRF) model were used to segment and label the stem and affixes of Mongolian in the preprocessing stage of Mongolian-Chinese bilingual corpus. Aiming at the low translation loyalty problem, a decoding model combining Convolution Neural Network (CNN) and Gated Recurrent Unit (GRU) was constructed. The target language decoding was performed by using the GRU. A global attention model was used to obtain the bilingual word alignment information in the process of bilingual word alignment processing. Finally, the quality of the translation was evaluated by Bilingual Evaluation Understudy (BLEU) values and Perplexity (PPL) values. The improved model yields a BLEU value of 25.13 and a PPL value of [Formula: see text]. The experimental results show that the E2E Mongolian-Chinese neural machine translation model was improved in terms of translation quality and semantic confusion compared with traditional statistical methods and machine translation models based on Recurrent Neural Networks (RNN).


2020 ◽  
Vol 31 (11) ◽  
pp. 4688-4698 ◽  
Author(s):  
Biao Zhang ◽  
Deyi Xiong ◽  
Jun Xie ◽  
Jinsong Su

Sign in / Sign up

Export Citation Format

Share Document