PROPELLER CAVITATION AND INDUCED VIBRATION

2021 ◽  
Vol 153 (A4) ◽  
Author(s):  
C Leontopoulos ◽  
S K Lee ◽  
L Karaminas

The demand to increase the efficiency of propellers has led to optimized propeller blade designs finding their way into the construction of high-powered commercial vessels, such as containers or LNG carriers and certain categories of passenger vessels, to mention but a few. It has become increasingly common to see the propeller tip rotate closer to the hull surface, sweeping the thick turbulent boundary layer attached to the hull, causing fluid structure interaction. At the same time, increasing the loading on marine propellers can lead to problems, such as noise, hull vibration, and cavitation. The degree above which, such phenomena as propeller cavitation can be the main perpetrators for intensive vibration during operation, their diagnosis and the solutions to mitigate this risk, such as the use of vortex generators, are discussed here, taking into account cost and longevity of the vessel as well as the involvement of classification rules.

2016 ◽  
Vol 33 (8) ◽  
pp. 2504-2529 ◽  
Author(s):  
Babak Lotfi ◽  
Bengt Sunden ◽  
Qiu-Wang Wang

Purpose The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. Design/methodology/approach A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region. Findings Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs. Originality/value This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.


2012 ◽  
Vol 226-228 ◽  
pp. 479-482 ◽  
Author(s):  
Hai Tao Sun ◽  
Ying Xiong

The present paper focuses on the fluid-structure interaction of flexible marine propellers. The aim is to develop a simulation method to predict the hydro-elastic performance. To compare with the experimental results, the geometry of propeller DTMB4119 is used. The solution procedure first computes the hydrodynamic pressures due to rigid-blade rotation via the BEM (Boundary Element Methods, BEM). The hydrodynamic pressures are then applied as external normal surface traction for the FEM (Finite Element Methods, FEM) solid model to obtain the deformed geometry. The commercial FEM code is then used to solve the equation of motion in the rotating blade-fixed coordinate system. User-defined subroutines are developed to generate FEM models using 8-node linear solid volumetric elements. Iterations are implemented between BEM and FEM solvers until the solution converges. This study shows that the simulation method developed in this paper is reasonable.


Author(s):  
Yin L. Young

Recently, there has been a significant interest in the use of composites for marine applications because of their higher strength-to-weight and stiffness-to-weight ratios, better corrosion characteristics, and the ability to be elastically tailored to improve hydrodynamic and/or structural performance. The objective of this work is to review advances made, and discuss current challenges, related to the design and modeling of advanced composite marine propulsors. The areas of focus include 1) the design and application of composite marine propellers, 2) the numerical modeling of the fluid-structure interaction responses and potential failure mechanisms of composite marine propellers, and 3) the scaling of the fluid-structure interaction responses and failure mechanisms of composite marine propellers.


Sign in / Sign up

Export Citation Format

Share Document