scholarly journals Biclique edge-choosability in some classes of graphs∗

2017 ◽  
Author(s):  
Gabriel A. G. Sobral ◽  
Marina Groshaus ◽  
André L. P. Guedes

In this paper we study the problem of coloring the edges of a graph for any k-list assignment such that there is no maximal monochromatic biclique, in other words, the k-biclique edge-choosability problem. We prove that the K3free graphs that are not odd cycles are 2-star edge-choosable, chordal bipartite graphs are 2-biclique edge-choosable and we present a lower bound for the biclique choice index of power of cycles and power of paths. We also provide polynomial algorithms to compute a 2-biclique (star) edge-coloring for K3-free and chordal bipartite graphs for any given 2-list assignment to edges.

2017 ◽  
Vol 340 (3) ◽  
pp. 481-493
Author(s):  
Ayineedi Venkateswarlu ◽  
Santanu Sarkar ◽  
Sai Mali Ananthanarayanan

2012 ◽  
Vol 312 (14) ◽  
pp. 2146-2152
Author(s):  
Mieczysław Borowiecki ◽  
Ewa Drgas-Burchardt

10.37236/93 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Guy Wolfovitz

We consider the next random process for generating a maximal $H$-free graph: Given a fixed graph $H$ and an integer $n$, start by taking a uniformly random permutation of the edges of the complete $n$-vertex graph $K_n$. Then, traverse the edges of $K_n$ according to the order imposed by the permutation and add each traversed edge to an (initially empty) evolving $n$-vertex graph - unless its addition creates a copy of $H$. The result of this process is a maximal $H$-free graph ${\Bbb M}_n(H)$. Our main result is a new lower bound on the expected number of edges in ${\Bbb M}_n(H)$, for $H$ that is regular, strictly $2$-balanced. As a corollary, we obtain new lower bounds for Turán numbers of complete, balanced bipartite graphs. Namely, for fixed $r \ge 5$, we show that ex$(n, K_{r,r}) = \Omega(n^{2-2/(r+1)}(\ln\ln n)^{1/(r^2-1)})$. This improves an old lower bound of Erdős and Spencer. Our result relies on giving a non-trivial lower bound on the probability that a given edge is included in ${\Bbb M}_n(H)$, conditioned on the event that the edge is traversed relatively (but not trivially) early during the process.


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Dariusz Dereniowski ◽  
Adam Nadolski

Graphs and Algorithms International audience We study two variants of edge-coloring of edge-weighted graphs, namely compact edge-coloring and circular compact edge-coloring. First, we discuss relations between these two coloring models. We prove that every outerplanar bipartite graph admits a compact edge-coloring and that the decision problem of the existence of compact circular edge-coloring is NP-complete in general. Then we provide a polynomial time 1:5-approximation algorithm and pseudo-polynomial exact algorithm for compact circular coloring of odd cycles and prove that it is NP-hard to optimally color these graphs. Finally, we prove that if a path P2 is joined by an edge to an odd cycle then the problem of the existence of a compact circular coloring becomes NP-complete.


Author(s):  
Min-Sheng Lin

Counting dominating sets (DSs) in a graph is a #P-complete problem even for chordal bipartite graphs and split graphs, which are both subclasses of weakly chordal graphs. This paper investigates this problem for distance-hereditary graphs, which is another known subclass of weakly chordal graphs. This work develops linear-time algorithms for counting DSs and their two variants, total DSs and connected DSs in distance-hereditary graphs.


Sign in / Sign up

Export Citation Format

Share Document