scholarly journals Internet Financial Investment Product Selection with Pythagorean Fuzzy DNMA Method

2020 ◽  
Vol 31 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Hongrun Zhang ◽  
Huchang Liao ◽  
Xingli Wu ◽  
Edmundas Kazimieras Zavadskas ◽  
Abdullah Al-Barakati

Abstract   The number of products based on internet financial platform has increased dramatically, but due to the lack of effective regulatory system and the information barrier of investors, product returns have been greatly discounted and investment risks have been greatly increased. How to select high-quality products in internet finance based on several indicators is an important multiple criteria decision making problem. In this regard, this study develops a Pythagorean fuzzy double normalization-based multiple aggregation (PF-DNMA) method to solve the problem of selecting internet financial products. Firstly, the key factors for evaluating internet financial products are identified. Observing that the Pythagorean fuzzy set is an effective tool to express evaluation information, we then extend the original multiple criteria decision making method named the double normalization-based multiple aggregation method to Pythagorean fuzzy environment. The PF-DNMA method is characterized by two normalization techniques and three aggregation tools, and thus is effective and robust in solving multiple criteria decision making problems. We deal with an internet financial investment problem by the PL-DNMA method and provide some comparative analyses with the Pythagorean fuzzy TOPSIS and VIKOR methods to illustrate the effectiveness of the proposed method.

2019 ◽  
Vol 11 (03) ◽  
pp. 1950029
Author(s):  
Ashoke Kumar Bera ◽  
Dipak Kumar Jana ◽  
Debamalya Banerjee ◽  
Titas Nandy

In today’s highly turbulent and competitive environment, the success of the organization depends on the performance of its suppliers. However, supplier selection problems are complex as they involve a large number of criteria and, frequently, some of the criteria cannot be evaluated precisely. Moreover, fluctuations of supplier performances and unknown information always exist in real-world decision-making. It is a complex multiple-criteria decision-making (MCDM) problem as it involves a trade-off among various criteria with vagueness and imprecision and also involves a group of experts with diverse opinion. Therefore, to make more practical decisions, this paper is intended to propose an integrated technique for order preference by similarity to ideal solution (TOPSIS) in fuzzy environment with multi-choice goal programming (MCGP) to handle the supplier assessment and order allocation for a battery manufacturing organization. Using linguistic variables, the decision-makers assess the rating of suppliers as well as the importance of various factors. Linguistic variables are expressed in trapezoidal fuzzy numbers (TrFN). Fuzzy-TOPSIS method is proposed to obtain the rank of suppliers and MCGP method is used to allocate suitable orders to the selected suppliers. A case study is implemented to find the applicability and validity of the proposed model. Finally, sensitivity analysis is performed to observe the effect of weights of criteria on supplier evaluation problem.


Author(s):  
Ahmed ElSayed ◽  
Elif Kongar ◽  
Surendra M. Gupta

<p>This paper presents a newly developed fuzzy linear physical programming (FLPP) model that allows the decision maker to introduce his/her preferences for multiple criteria decision making in a fuzzy environment. The major contribution of this research is to generalize the current models by accommodating an environment that is conducive to fuzzy problem solving. An example is used to evaluate, compare and discuss the results of the proposed model.</p>


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Luis Pérez-Domínguez ◽  
Luis Alberto Rodríguez-Picón ◽  
Alejandro Alvarado-Iniesta ◽  
David Luviano Cruz ◽  
Zeshui Xu

The multiobjective optimization on the basis of ratio analysis (MOORA) method captures diverse features such as the criteria and alternatives of appraising a multiple criteria decision-making (MCDM) problem. At the same time, the multiple criteria problem includes a set of decision makers with diverse expertise and preferences. In fact, the literature lists numerous approaches to aid in this problematic task of choosing the best alternative. Nevertheless, in the MCDM field, there is a challenge regarding intangible information which is commonly involved in multiple criteria decision-making problem; hence, it is substantial in order to advance beyond the research related to this field. Thus, the objective of this paper is to present a fused method between multiobjective optimization on the basis of ratio analysis and Pythagorean fuzzy sets for the choice of an alternative. Besides, multiobjective optimization on the basis of ratio analysis is utilized to choose the best alternatives. Finally, two decision-making problems are applied to illustrate the feasibility and practicality of the proposed method.


2016 ◽  
Vol 15 (05) ◽  
pp. 1157-1179 ◽  
Author(s):  
N. Thillaigovindan ◽  
S. Anita Shanthi ◽  
J. Vadivel Naidu

This paper considers a multiple criteria decision-making (MCDM) problem under risk in fuzzy environment in its general form. There are m alternatives which need to be ranked on the basis of a set of n criteria. The alternatives and the criteria are evaluated based on a set of l characteristics. The entire data is presented in the form of interval valued intuitionistic fuzzy soft set of root type. In addition each criterion is assigned a subjective criterion weight based on expert’s evaluation and each characteristic is assigned a probability weight on the basis of decision maker’s knowlege and understanding of the importance of the characteristic. This problem may be called as a MCDM problem under risk in fuzzy environment in its general form. A method for ranking the alternatives using the new score functions, prospect theory and method of determining the optimum criteria weights is explained. An algorithm is developed for this purpose and its working illustrated with a suitable example.


Sign in / Sign up

Export Citation Format

Share Document