scholarly journals Stability Analysis of Multi-Inverters Grid-Connected System Using Improved Current Source Impedance Ratio Criterion

2019 ◽  
Vol 25 (2) ◽  
Author(s):  
Hu Guozhen ◽  
Mao Ling ◽  
Liu Jun ◽  
Zhang Lei ◽  
Fang Zhi Jian
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2250 ◽  
Author(s):  
Rui Wang ◽  
Qiuye Sun ◽  
Qifu Cheng ◽  
Dazhong Ma

This paper proposes an overall practical stability assessment for a multi-port single-phase solid-state transformer (MS3T) in the electromagnetic timescale. When multiple stable subsystems are combined into one MS3T, the newly formed MS3T has a certain possibility to be unstable. Thus, this paper discusses the stability assessment of the MS3T in detail. First and foremost, the structure of the MS3T and its three stage control strategies are proposed. Furthermore, the stability analysis of each of the MS3T’s subsystems is achieved through the closed loop transfer function of each subsystem, respectively, including an AC-DC front-end side converter, dual active bridge (DAB) with a high-frequency (HF) or medium-frequency (MF) transformer, and back-end side incorporating DC-AC and dc-dc converters. Furthermore, the practical impedance stability criterion in the electromagnetic timescale, which only requires two current sensors and one external high-bandwidth small-signal sinusoidal perturbation current source, is proposed by the Gershgorin theorem and Kirchhoff laws. Finally, the overall stability assessment, based on a modified impedance criterion for the MS3T is investigated. The overall practical stability assessment of the MS3T can be validated through extensive simulation and hardware results.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3676
Author(s):  
Chuanyue Li ◽  
Taoufik Qoria ◽  
Frederic Colas ◽  
Jun Liang ◽  
Wenlong Ming ◽  
...  

The dq impedance stability analysis for a grid-connected current-control inverter is based on the impedance ratio matrix. However, the coupled matrix brings difficulties in deriving its eigenvalues for the analysis based on the general Nyquist criterion. If the couplings are ignored for simplification, unacceptable errors will be present in the analysis. In this paper, the influence of the couplings on the dq impedance stability analysis is studied. To take the couplings into account simply, the determinant-based impedance stability analysis is used. The mechanism between the determinant of the impedance-ratio matrix and the inverter stability is unveiled. Compared to the eigenvalues-based analysis, only one determinant rather than two eigenvalue s-function is required for the stability analysis. One Nyquist plot or pole map can be applied to the determinant to check the right-half-plane poles. The accuracy of the determinant-based stability analysis is also checked by comparing with the state-space stability analysis method. For the stability analysis, the coupling influence on the current control, the phase-locked loop, and the grid impedance are studied. The errors can be 10% in the stability analysis if the couplings are ignored.


1997 ◽  
Vol 66 (7) ◽  
pp. 1986-1988 ◽  
Author(s):  
Takasi Endo ◽  
Eitaro Morimoto ◽  
Yutaka Hirayoshi ◽  
Kouich Toyoshima

2018 ◽  
Vol 8 (4) ◽  
pp. 50
Author(s):  
Vinicius Sirtoli ◽  
Kaue Morcelles ◽  
John Gomez ◽  
Pedro Bertemes-Filho

Electrical Bioimpedance Spectroscopy (EIS) is a technique used to assess passive electrical properties of biological materials. EIS detects physiological and pathological conditions in animal tissues. Recently, the introduction of broadband excitation signals has reduced the measuring time for application techniques such as Electrical Bioimpedance Myography. Therefore, this work is aimed at proposing a prototype by using discrete interval binary sequences (DIBS), which is based on a system that holds a current source, impedance acquisition system, microcontroller and graphical user interface. Measurements between 5 Ω to 5 kΩ had impedance acquisition and phase angle errors of aproximately 2% and were lower than 3 degrees, respectively. Based on a proposed circuit, bioimpedance of the chest muscle (Pectoralis Major) was measured during isotonic exercise (push-up). As a result, our analyses have detected tiredness and fatigue. We have explored and proposed new parameters which assess such conditions, as both the maximum magnitude and tiredness coefficient. These parameters decrease exponentially with consecutive push-ups and were convergent in the majority of the sixteen days of measurement.


Sign in / Sign up

Export Citation Format

Share Document