DYNAMIC DOMAIN DECOMPOSITION APPLIED TO HOPPER DISCHARGE SIMULATION BY DISCRETE ELEMENT METHOD

2011 ◽  
Vol 40 (4) ◽  
Author(s):  
Darius Markauskas ◽  
Arnas Kačeniauskas ◽  
Algirdas Maknickas
Author(s):  
Dominik Höhner ◽  
Siegmar Wirtz ◽  
Viktor Scherer

In this study hopper discharge experiments with wood pellets were conducted. The experimental bulk density, flow behavior and discharge rate were compared to corresponding 3-dimensional discrete element simulations with both multi-sphere and polyhedral approximations of the pellet geometry. Additionally a numerical sensitivity analysis for the particle-wall friction was made in order to evaluate the influence of this parameter on hopper discharge in the context of different particle geometries. In the past comparisons of experimentally and numerically obtained results demonstrated the adequacy of the discrete element method for predicting the general discharge behavior of a hopper. Nevertheless, in this study, comparing two different particle shape-approximations, significant differences in terms of bulk density, discharge rate, flow profile and dependency on the particle-wall friction coefficient between both investigated particle-shape approximation schemes could be observed. As a result, particle shape-representation must be considered a significant parameter in DEM-simulations.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document