scholarly journals Modeling & Operating Algorithm of Islanding Microgrid with Wind Turbine, Diesel Generator and BESS

2014 ◽  
Vol 15 (9) ◽  
pp. 5893-5898 ◽  
Author(s):  
Jae-Eon Kim
Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2015 ◽  
Vol 4 (1) ◽  
pp. 11-19
Author(s):  
Mevlan Qafleshi ◽  
Driton R. Kryeziu ◽  
Lulezime Aliko

The energy generation in Albania is completely from the hydropower plants. In terms of GHG emissions this is 100% green. In Kosovo 97% of energy is generated from lignite fired power plants. Apart the energy generation, the combustion process emits around 8000 ktCO2/yr and 1.5 Mt of ash in the form of fly and bottom ash. In both countries there is no MWh power generated from wind energy, i.e. this energy source is not utilized. Here, a proposed project for five locations in Albania and Kosovo has been analyzed in detail with the aim of installing a 1kW wind turbine off-grid. The method of study is based on the application of RETScreen International program software. This proposed model is intended to replace a base case- a diesel generator with installed capacity 7kW.  The locations are selected three in Albania: Vlora, Korça and Elbasan, and two in Kosovo: Prishtina and Prizren. All are in different altitudes. By the calculation of RETScreen program, it has been analyzed the feasibility of the proposed projects by installing a wind turbine at hub’s height 20m. The climate data for each location were retrieved by the RETScreen program from NASA. Generally, the calculation of financial parameters for the investments came out to be positive, the impact of GHG reduction very significant. A 5500 USD investment for the implementation of proposed case showed an equity payback time of 2-3 yrs and GHG reduction of 2.2 tCO2/yr. The electricity delivery to load only from this 1 KW wind turbine resulted to be between 1.6-17 MWh/yr.


2018 ◽  
Vol 42 (5) ◽  
pp. 411-435 ◽  
Author(s):  
Sergey N Udalov ◽  
Andrey A Achitaev ◽  
Alexander G Pristup ◽  
Boris M Bochenkov ◽  
Yuri Pankratz ◽  
...  

The paper is devoted to investigations of dynamic processes in a local power system consisting of wind turbines with a magnetic continuously variable transmission. Due to low inertia of wind turbine generator rotors, there is a problem of ensuring dynamic stability at sharp load changes or at short circuits in an autonomous power system. To increase dynamic stability of the system, two algorithms for controlling a magnetic continuously variable transmission are presented. The first algorithm stabilizes a rotation speed of the high-speed rotor of a magnetic continuously variable transmission from the generator side in a local power system consisting of wind turbines with uniform synchronous generators with permanent magnets having equal moments of inertia. Undoubtedly, local power systems having only the wind turbines with equal mechanical inertia time constants are not widely used due to stochastic nature of wind energy. Therefore, wind power systems are combined with a diesel generator or a gas-turbine unit. Investigations show that the use of the only speed stabilization algorithm is not enough for such power systems, because there is a possibility for occurrence of asynchronous operation under specific power changes due to the difference in moments of inertia of generator rotors. Thus, the second algorithm uses the phase shift compensation in accordance with a primary generator in an autonomous power system consisting of non-uniform generators having different mechanical inertia time constants. As a primary generator, a diesel generator or a gas-turbine unit having a primary speed controller may be used. It should be noted that algorithms of stabilization for speed and phase angle are extended by an inertial circuit of aerodynamic compensation for torque of rotation from the wind turbine side to reduce loading on an energy storage unit of the magnetic continuously variable transmission at disturbances from the generator side and the turbine side.


Sign in / Sign up

Export Citation Format

Share Document