scholarly journals Simulation of Cutting Process – Modeling and Applications

10.5772/10374 ◽  
2010 ◽  
Author(s):  
Wojciech
2010 ◽  
Vol 4 (3) ◽  
pp. 213-213
Author(s):  
Keiichi Shirase

In the 5 decades-plus since the first numerical control (NC) machine tool was demonstrated at the Massachusetts Institute of Technology in Boston, MA, USA, advances such as high-speed, multi-axis and multi-tasking machine tools have been introduced widely to achieve high quality and productivity in machining operations. In order to handle these sophisticated machine tools freely and effectively, sophisticated NC programs are conventionally required in advance for problem-free machining. Computer simulation and optimization of cutting processes by considering process physics, machine tool dynamics and kinematics and process constraints are helpful in the strategic process planning operation and useful in preparing sophisticated NC programs. However, challenges and models quantitatively predicting cutting process performance remain to be developed. Topics of interests in this special issue include but are not limited to - machining process modeling - machine tool dynamics modeling - cutting force, cutting temperature, surface roughness, etc., prediction - machining stability prediction - simulation-based machining-process diagnostics - optimization using machining simulation The review paper and ten research works accepted are related to state-of-the-art modeling and simulation applicable to the machining and manufacturing domains. Besides traditional machining, nontraditional machining such as laser machining for micromachining have been explored. Also the machining of calcium polyphosphate (CPP) for tissue engineering applications has been investigated. The articles in this special issue are sure to prove interesting, informative, and inspiring to our readers on advances in cutting process modeling and simulation. Finally, we thank the authors, reviewers, and editors for their invaluable contributions and generous efforts in enabling this issue to be published.


1997 ◽  
Vol 119 (4B) ◽  
pp. 655-663 ◽  
Author(s):  
K. F. Ehmann ◽  
S. G. Kapoor ◽  
R. E. DeVor ◽  
I. Lazoglu

In this paper, a summary of work performed in the area of modeling of the dynamic metal cutting process is presented. A general view of evolution of the dynamic cutting process models is depicted. Specifically four modeling approaches including analytical, experimental, mechanistic and numerical methods are critically reviewed. A brief assessment of future research needs is also given.


2002 ◽  
Vol 12 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Y. Zamachtchikov ◽  
F. Breaban ◽  
P. Vantomme ◽  
A. Deffontaine

2013 ◽  
Vol 3 (1) ◽  
pp. 30-36
Author(s):  
Neeraj Sharma ◽  
◽  
Rahul Dev Gupta ◽  
Nirmal Kumar ◽  
◽  
...  

Author(s):  
S.V. Povorov ◽  
D.V. Egorov ◽  
D.S. Volgin

The change in cutting force in the cutting process of roll-formed section in shaped dies-knife guillotine is studied. It is established that to calculate the cutting force in shaped guillotine, one can use formulas to determine the cutting force of sheet blank on conventional straight knives guillotine.


Sign in / Sign up

Export Citation Format

Share Document