Determination of cutting force of roll-formed section in shaped dies-knife guillotine

Author(s):  
S.V. Povorov ◽  
D.V. Egorov ◽  
D.S. Volgin

The change in cutting force in the cutting process of roll-formed section in shaped dies-knife guillotine is studied. It is established that to calculate the cutting force in shaped guillotine, one can use formulas to determine the cutting force of sheet blank on conventional straight knives guillotine.

1990 ◽  
Vol 112 (1) ◽  
pp. 21-27 ◽  
Author(s):  
I. E. Minis ◽  
E. B. Magrab ◽  
I. O. Pandelidis

The dynamics of the metal cutting process are identified by a new and simple experimental method that permits the direct determination of the cutting transfer functions from input-output measurements. A specially designed stiff force dynamometer rigidly mounted to the machine tool’s turret is used for the measurement of the cutting force. An external force is applied to the base plate of the dynamometer in such a way that the meaurements of both the tool’s displacement and the corresponding cutting force are uncoupled from the influence of the machine tool structure’s dynamics. The cutting transfer functions are obtained in the vicinity of the structure’s first resonance, under a wide range of cutting conditions.


Author(s):  
LJ. Tanovic ◽  
P. Bojanic ◽  
R. Puzovic ◽  
S. Klimenko

This paper offers an experimental study of the microcutting mechanisms in marble grinding to aid the optimization of the marble grinding process. The necessity for investigating these mechanisms is dictated by the increased use of marble in many applications and the fact that grinding and polishing processes are the dominant technologies used to meet surface finish requirements in this natural material. The experiments are aimed at the determination of the normal component of the cutting force and of the grain traces in microcutting with a single diamond grain. The investigations carried out make provisions for establishing critical grain penetration and cutting depths and allow the prediction of the normal cutting force component as a function of grain penetration speed and depth.


2006 ◽  
Vol 5-6 ◽  
pp. 367-374
Author(s):  
C. G. Dumitraş

Due to robotic deburring development, the research gains a new orientation and focused on the cutting forces and the chip control. The present paper will emphasize the main difference which occurs between the normal cutting process and the deburring process, the way it develops and the parameters which characterize this process. Also the dynamics of the process are considered. Based on a central composite design one determine a relation between the geometry of the tool, workpiece hardness and cutting force.


2014 ◽  
Vol 536-537 ◽  
pp. 1431-1434 ◽  
Author(s):  
Ying Zhu ◽  
Yin Cheng Zhang ◽  
Shun He Qi ◽  
Zhi Xiang

Based on the molecular dynamics (MD) theory, in this article, we made a simulation study on titanium nanometric cutting process at different cutting depths, and analyzed the changes of the cutting depth to the effects on the work piece morphology, system potential energy, cutting force and work piece temperature in this titanium nanometric cutting process. The results show that with the increase of the cutting depth, system potential energy, cutting force and work piece temperature will increase correspondingly while the surface quality of machined work piece will decrease.


2016 ◽  
Vol 836-837 ◽  
pp. 374-380
Author(s):  
Teng Yi Shang ◽  
Li Jing Xie ◽  
Xiao Lei Chen ◽  
Yu Qin ◽  
Tie Fu

In the meso-scale machining, feed rate, grain size and tool edge radius are in the same order of magnitude, and cutting process is often carried out in the grain interior and grain boundary. In this paper the meso-cutting process of hot-rolled AISI1045 steel is studied and its metallographic microstructure is analyzed for the establishment of multiphase models which incorporate the effect of ferrite and pearlite grains. In order to discover the applicability of multiphase models to the simulation of meso-cutting, three contrast simulation models including multiphase model with rounded-edge cutting insert (model I), multiphase model with sharp edge cutting insert (model II) and equivalent homogeneous material model with rounded-edge cutting insert (model III) are built up for the meso-orthogonal cutting processes of hot-rolled AISI1045. By comparison with the experiments in terms of chip morphology, cutting force and specific cutting force, the most suitable model is identified. Then the stress distiribution is analyzed. And it is found that multiphase model with tool edge radius can give a more accurate prediction of the global variables and reveal more about these important local variables distribution.


1999 ◽  
Author(s):  
Armen L. Airikyan

Abstract Everyday practice of cutting process planning requires reliable chipbreacking and this is particularly true when machining difficult-ti-machine materials as austenitic stainless steels. The use of pressed-groove type of chipbreakers prove to provide a partly solution of the problem since their utilization unavoidably leads to increasing cutting force and chipping of the cutting edge. The use of clapped-on chipbreaker seems to solve these problems. However new design and application problem arise. This paper deals with the analysis of these problema and offers a methodology for it resolving. As a result, a new type of a clamped-on chipbreaker has been developed.


2010 ◽  
Vol 1 (1) ◽  
pp. 136-143
Author(s):  
Robert Keresztes ◽  
Gabor Kalacska

Nowadays parts made of up-to-date engineering plastics are used more and morein mechanical engineering practice. These machine-elements are produced most frequentlyby injection molding or by one cutting process. The injection molding technology are usedgenerally for great number of pieces, in case of serial production while cutting processes arepreferred to piece (unit) or smaller number production.We used lathe and measured the main- and feeding-directional cutting force at differentengineering polymers (cast PA6, POM C and UHMW PE HD 1000). The analysis made canbe well used in practice.


Procedia CIRP ◽  
2015 ◽  
Vol 31 ◽  
pp. 405-410 ◽  
Author(s):  
B. Denkena ◽  
T. Grove ◽  
M.A. Dittrich ◽  
D. Niederwestberg ◽  
M. Lahres

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3799-3808
Author(s):  
Ján Melicherčík ◽  
Jozef Krilek ◽  
Pavol Harvánek

This study focused on stress and strain analysis of the cutting force of a branch knife with a replaceable cutting edge. The replaceable edge forms part of the delimbing head, which is applied to the arms of a mechanical harvester working in forestry. Basic parameters of the knife and head of the harvester with the basic calculations necessary to determine the number of knives based on input parameters, such as wood diameter, woody plants, and determination of the cutting force acting on the cutting knife, were examined. Based on the cutting force and the design of the special cutting knife, a stress analysis and a finite element method (FEM) was performed. This study confirmed the correctness of the selected material to produce the delimbing knife, which was designed using a replaceable cutting edge. The output of the stress analysis is reported.


Sign in / Sign up

Export Citation Format

Share Document