Experimental Investigation and Prediction of Frictional Responses in the Orthogonal Cutting Process

2001 ◽  
Vol 4 (1-2) ◽  
pp. 89-109 ◽  
Author(s):  
Wit Grzesik
2012 ◽  
Vol 504-506 ◽  
pp. 1329-1334 ◽  
Author(s):  
Moises Batista ◽  
Madalina Calamaz ◽  
Franck Girot ◽  
Jorge Salguero ◽  
Mariano Marcos

The forces involved in a cutting process are related, for example, with the power consumption, with the final quality of the workpiece and with the chip geometry obtained, since these forces determine the compression experimented by the chip and therefore its final geometry. The orthogonal cutting process assisted with a High Speed Filmation (HSF) permit obtains a digital filmation of the process with high magnification. This filmation permits to obtain a measurement of the longitudinal changes produced in the chip. This deforms are related with the Shrinkage Factor, ζ. And in this case the Stabler hypothesis is enabled, by that using the shear angle and the rake angle is possible obtain a value of the Shrinkage Factor in a different conditions.


Author(s):  
G. Giorleo ◽  
R. Teti ◽  
A. Langella ◽  
D. D’Addona ◽  
U. Prisco

1987 ◽  
Vol 109 (4) ◽  
pp. 275-280 ◽  
Author(s):  
T. Y. Ahn ◽  
K. F. Eman ◽  
S. M. Wu

Many efforts have been devoted in the past to the identification of the dynamic behavior of the cutting process. Nevertheless, there have been no consistent results due to the inherent complexity of the cutting process, and the methodological and experimental errors involved. Among the problems to be solved, the experimental realization of the double modulation is the most difficult one. Present approaches use elaborate instrumentation and assume the delayed inner modulation for the outer modulation. This assumption may not hold under all circumstances and it will be modified in this paper. The present method approaches the cutting process as a one-input one-output process consisting of the inner modulation and dynamic cutting force component. The application of bivariate time series models give the transfer function of the inner modulation dynamics. The outer modulation dynamics’ effect on the cutting process is subsequently determined from the disturbance noise dynamics. The theoretical background for the proposed approach along with a new modeling strategy has been introduced in detail. The experimental verification of the theoretical postulates and the identification of the cutting process dynamics were carried out using actual data collected from an orthogonal turning process of a tubular workpiece. External white noise excitation was used and the experimental setup was designed to minimize the errors caused by inertia and disturbances. Although the proposed method requires prior knowledge of the machine tool structure, it requires a comparatively simple experimental procedure and minimizes the possible errors associated with the signal processing task.


Sign in / Sign up

Export Citation Format

Share Document