Acoustic–Gravity Waves in the Ionosphere During Solar Eclipse Events

Author(s):  
Petra Koucka ◽  
Zbysek Mos
2020 ◽  
Vol 14 (2) ◽  
pp. 355-361
Author(s):  
Yu. A. Dyakov ◽  
Yu. A. Kurdyaeva ◽  
O. P. Borchevkina ◽  
I. V. Karpov ◽  
S. O. Adamson ◽  
...  

2015 ◽  
Vol 47 (9) ◽  
pp. 10-22 ◽  
Author(s):  
Yuriy P. Ladikov-Roev ◽  
Oleg K. Cheremnykh ◽  
Alla K. Fedorenko ◽  
Vladimir E. Nabivach

2021 ◽  
Vol 915 ◽  
Author(s):  
Byron Williams ◽  
Usama Kadri ◽  
Ali Abdolali

Abstract


1996 ◽  
Vol 39 (3) ◽  
pp. 224-228
Author(s):  
N. V. Bakhmet'eva ◽  
V. V. Belikovich ◽  
E. A. Benediktov ◽  
V. N. Bubukina ◽  
N. P. Goncharov ◽  
...  

1992 ◽  
Vol 11 (2) ◽  
pp. 37-41 ◽  
Author(s):  
Jinlai Xie ◽  
Xunren Yang ◽  
Qitai Li

Can solar eclipses generate AGWs? If so, how are they excited? This is still an open question and a long-standing dispute within academic circles. The annular solar eclipse which traversed the Chinese mainland on September 23rd 1987 afforded a rare and excellent opportunity to study this problem. Vast amounts of data of microbarometric pressure at ground level, radio-sondage, solar radiation and ionospheric probing were obtained from various observation stations. By making use of these abundant data synthetically, an important conclusion has been reached: there is an obvious accord between the period of the solar eclipse, AGW and the fluctuation period of solar direct radiation. All the solar eclipse AGWs in different places come from two different kinds of atmospheric oscillation, i.e., the forced oscillation generated directly by changes in direct solar radiation and the buoyancy oscillation in the local atmosphere above various spots. The former has a longer wave period and a larger amplitude, depending directly upon the radiation change during the solar eclipse; the latter has a shorter period and smaller amplitude, depending upon thermodynamic stability in the local atmosphere during the solar eclipse and the atmospheric moisture condition.


2007 ◽  
Vol 7 (18) ◽  
pp. 4943-4951 ◽  
Author(s):  
C. S. Zerefos ◽  
E. Gerasopoulos ◽  
I. Tsagouri ◽  
B. E. Psiloglou ◽  
A. Belehaki ◽  
...  

Abstract. This study aims at providing experimental evidence, to support the hypothesis according to which the movement of the moon's shadow sweeping the ozone layer at supersonic speed, during a solar eclipse, creates gravity waves in the atmosphere. An experiment was conducted to study eclipse induced thermal fluctuations in the ozone layer (via measurements of total ozone column, ozone photolysis rates and UV irradiance), the ionosphere (Ionosonde Total Electron Content – ITEC, peak electron density height – hmF2), and the troposphere (temperature, relative humidity), before, during and after the total solar eclipse of 29 March 2006. We found the existence of eclipse induced dominant oscillations in the parameters related to the ozone layer and the ionosphere, with periods ranging between 30–40 min. Cross-spectrum analyses resulted to statistically significant square coherences between the observed oscillations, strengthening thermal stratospheric ozone forcing as the main mechanism for GWs. Additional support for a source below the ionosphere was provided by the amplitude of the oscillations in the ionospheric electron density, which increased upwards from 160 to 220 km height. Even though similar oscillations were shown in surface temperature and relative humidity data, no clear evidence for tropospheric influence could be derived from this study, due to the modest amplitude of these waves and the manifold rationale inside the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document