atmospheric gravity
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 82)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
Subrata Kundu ◽  
Swati Chowdhury ◽  
Soujan Ghosh ◽  
Sudipta Sasmal ◽  
Dimitrios Z. Politis ◽  
...  

Atmospheric disturbances caused by seismic activity are a complex phenomenon. The Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) (LAIC) mechanism gives a detailed idea to understand these processes to study the possible impacts of a forthcoming earthquake. The atmospheric gravity wave (AGW) is one of the most accurate parameters for explaining such LAIC process, where seismogenic disturbances can be explained in terms of atmospheric waves caused by temperature changes. The key goal of this work is to study the perturbation in the potential energy associated with stratospheric AGW prior to many large earthquakes. We select seven large earthquakes having Richter scale magnitudes greater than seven ( M > 7.0 ) in Japan (Tohoku and Kumamoto), Mexico (Chiapas), Nepal, and the Indian Ocean region, to study the intensification of AGW using the atmospheric temperature profile as recorded from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite. We observe a significant enhancement in the potential energy of the AGW ranging from 2 to 22 days prior to different earthquakes. We examine the conditions of geomagnetic disturbances, typhoons, and thunderstorms during our study and eliminate the possible contamination due to these events.


2021 ◽  
Author(s):  
Soumyajyoti Jana ◽  
Gargi Rakshit ◽  
Animesh Maitra

Abstract The elevated layer of heat-absorbing pollutant aerosols causes temperature perturbations in the pre-monsoon period above the boundary layer height (1.6-4 km) as observed over a polluted tropical urban location Kolkata (22°34' N, 88°22' E) during 2007-2016. Satellite observations of different types of aerosols show an increase in aerosol extinction coefficient around 1.6-4 km altitude, enhancing the perturbations in both temperature and wind profiles at that height. The opposing air mass movement within and above the boundary layer, which is strengthened by elevated heat-absorbing aerosols, is illustrated by height profiles of atmospheric vorticity and divergence. This results in higher Brunt-Vaisala frequencies indicating increased atmospheric oscillations. Consequently, atmospheric gravity waves, which manifest the temperature and wind profile perturbations, have enhanced energy in the upper troposphere (6-10 km). Based on multi- technique observations consisting of radiosonde, space-borne lidar and model data, this study reveals the interactions between aerosol and other atmospheric processes such as temperature variations and wind perturbations, which affect the atmospheric instability and increase gravity wave activities during the pre-monsoon period over a tropical metropolis.


2021 ◽  
Vol 26 (4) ◽  
pp. 326-343
Author(s):  
L. F. Chernogor ◽  
◽  
K. P. Garmash ◽  
Y. H. Zhdanko ◽  
S. G. Leus ◽  
...  

Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems activates, and the parameters of the dynamic processes become disturbed. Investigation of these processes contributes to understanding of the structure and dynamics of the subsystems. The ionospheric response to the solar eclipse depends on the season, local time, magnitude of the solar eclipse, phase of the solar cycle, the observation site, the state of space weather, etc. Therefore, the study of the effects, which each new solar eclipse has on the ionosphere remains an urgent geophysics and radio physics problem. The purpose of this paper is to describe the radio wave characteristics and ionospheric parameters, which accompanied the partial solar eclipse of 10 June 2021 over the City of Kharkiv. Design/methodology/approach: To make observations, the means of the HF Doppler measurements at vertical and oblique incidence available at the V. N. Karazin Kharkiv National University Radiophysical Observatory were employed. The data obtained at the “Lviv” Magnetic Observatory were used for making intercomparison. Findings: The radiophysical observations have been made of the dynamic processes acting in the ionosphere during the solar eclipse of 10 June 2021 and on the reference days. The temporal variations in the Doppler frequency shift observed at vertical and oblique radio paths have been found to be, as a whole, similar. Generally speaking, the Doppler spectra over these radio propagation paths were different. Over the oblique radio paths, the number of rays was greater. The solar eclipse was accompanied by wave activity enhancement in the atmosphere and ionosphere. At least three wave trains were observed. The values of the periods (about 5–12 min) and the relative amplitudes of perturbations in the electron density (δN≈0.3–0.6 %) give evidence that the wave disturbances were caused by atmospheric gravity waves. The amplitude of the 6–8-min period geomagnetic variations has been estimated to be 0.5–1 nT. Approximately the same value has been recorded in the X component of the geomagnetic field at the nearest Magnetic Observatory. The aperiodic effect of the solar eclipse has appeared to be too small (less than 0.01 Hz) to be observed confidently. The smallness of the effect was predetermined by an insignificant magnitude of the partial eclipse over the City of Kharkiv (no more than 0.11). Conclusions: The features of the solar eclipse of 10 June 2021 include an insignificant magnitude of the aperiodic effect and an enhancement in wave activity in the atmosphere and ionosphere. Key words: solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity wave


2021 ◽  
Author(s):  
Paolo Redoblado ◽  
Sarwan Kumar ◽  
Abhikesh Kumar ◽  
Sushil Kumar

Abstract In this paper, we present the D-region ionospheric response during the lifespan (10–19 December 2020) of a severe category 5 tropical cyclone (TC) Yasa in the South Pacific by using the very low frequency (VLF, 3-30 kHz) signals from NPM, NLK, and JJI transmitters recorded at Suva, Fiji. Results indicate enhanced lightning and convective activity in all three regions (eyewall, inner rainbands, and outer rainbands) during the TC Yasa that are also linked to the wave sensitive zones of these transmitter-receiver great circle paths. Of the three regions, the outer rainbands showed the maximum lightning occurrence; hence convective activity. Prominent eyewall lightning was observed just before the TC started to weaken following its peak intensity. Analysis of VLF signal amplitudes showed both negative and positive perturbations (amplitudes exceeding ±3σ mark) lasting for more than 2 hours with maximum change in the daytime and nighttime signal amplitudes of -4.9 dB (NPM) and -19.8 dB (NLK), respectively. The signal perturbations were wave-like, exhibiting periods of oscillations between ~2.2-5.5 hours as revealed by the Morlet wavelet analysis. Additionally, the LWPC modeling of the signal perturbations indicated a 10 km increase in daytime D-region reference height, H¢, and a 12 km decrease in nighttime D-region H¢ during TC Yasa. The D-region density gradients (sharpness), b, showed small perturbations of 0.01–0.14 km-1 from its normal values. We suggest that the observed changes to the D-region parameters are due to the enhanced convection during TC Yasa which excites atmospheric gravity waves producing travelling ionospheric disturbances to the D-region.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 481
Author(s):  
Masashi Hayakawa ◽  
Jun Izutsu ◽  
Alexander Schekotov ◽  
Shih-Sian Yang ◽  
Maria Solovieva ◽  
...  

The purpose of this paper is to discuss the lithosphere–atmosphere–ionosphere coupling (LAIC) effects with the use of multiparameter precursor observations for two successive Japanese earthquakes (EQs) (with a magnitude of around 7) in February and March 2021, respectively, considering a seemingly significant difference in seismological and geological hypocenter conditions for those EQs. The second March EQ is very similar to the famous 2011 Tohoku EQ in the sense that those EQs took place at the seabed of the subducting plate, while the first February EQ happened within the subducting plate, not at the seabed. Multiparameter observation is a powerful tool for the study of the LAIC process, and we studied the following observables over a 3-month period (January to March): (i) ULF data (lithospheric radiation and ULF depression phenomenon); (ii) ULF/ELF atmospheric electromagnetic radiation; (iii) atmospheric gravity wave (AGW) activity in the stratosphere, extracted from satellite temperature data; (iv) subionospheric VLF/LF propagation data; and (v) GPS TECs (total electron contents). In contrast to our initial expectation of different responses of anomalies to the two EQs, we found no such conspicuous differences of electromagnetic anomalies between the two EQs, but showed quite similar anomaly responses for the two EQs. It is definite that atmospheric ULF/ELF radiation and ULF depression as lower ionospheric perturbation are most likely signatures of precursors to both EQs, and most importantly, all electromagnetic anomalies are concentrated in the period of about 1 week–9 days before the EQ to the EQ day. There seems to exist a chain of LAIC process (cause-and-effect relationship) for the first EQ, while all of the observed anomalies seem to occur nearly synchronously in time for the send EQ. Even though we tried to discuss possible LAIC channels, we cannot come to any definite conclusion about which coupling channel is plausible for each EQ.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahesh N. Shrivastava ◽  
Ajeet Kumar Maurya ◽  
Kondapalli Niranjan Kumar

AbstractThe influence of the South American total solar eclipse of 14th December 2020 on the ionosphere is studied by using the continuous Chilean Global Positioning System (GPS) sites across the totality path. The totality path with eclipse magnitude 1.012 passed through the Villarrica (Lon. 72.2308°W and Lat. 39.2820°S) in south Chile during 14:41:02.0 UTC to 17:30:58.1 UTC and maximum occurred ~ 16:03:49.5 UTC around the local noon. The vertical total electron content (VTEC) derived by GPS sites across the totality path for two PRN’s 29 and 31 show almost 20–40% of reduction with reference to ambient values. The percentage reduction was maximum close to totality site and decreases smoothly on both sides of totality sites. Interestingly, the atmospheric gravity waves (AGWs) with a period ~ 30–60 min obtained using wavelet analysis of VTEC timeseries show the presence of strong AGWs at the GPS sites located north of the totality line. But the AGWs do not show any significant effect on the VTEC values to these sites. Our analysis suggests, possibly an interplay between variability in the background plasma density and eclipse-generated AGWs induced plasma density perturbation could explain the observations.


2021 ◽  
Vol 14 (9) ◽  
pp. 5873-5886
Author(s):  
Corwin J. Wright ◽  
Neil P. Hindley ◽  
M. Joan Alexander ◽  
Laura A. Holt ◽  
Lars Hoffmann

Abstract. Atmospheric gravity waves (GWs) are a critically important dynamical mechanism in the terrestrial atmosphere, with significant effects on weather and climate. They are geographically ubiquitous in the middle and upper atmosphere, and thus, satellite observations are key to characterising their properties and spatial distribution. Nadir-viewing satellite instruments characterise the short horizontal wavelength portion of the GW spectrum, which is important for momentum transport; however, these nadir-sensing instruments have coarse vertical resolutions. This restricts our ability to characterise the 3D structure of these waves accurately, with important implications for our quantitative understanding of how these waves travel and how they drive the atmospheric circulation when they break. Here, we describe, implement and test a new spectral analysis method to address this problem. This method is optimised for the characterisation of waves in any three-dimensional data set where one dimension is of coarse resolution relative to variations in the wave field, a description which applies to GW-sensing nadir-sounding satellite instruments but which is also applicable in other areas of science. We show that our new “2D + 1 ST” method provides significant benefits relative to existing spectrally isotropic methods for characterising such waves. In particular, it is much more able to detect regional and height variations in observed vertical wavelength and able to properly characterise extremely vertically long waves that extend beyond the data volume.


Author(s):  
Irfan Azeem

Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the prominent sources of variability in the ionosphere. Partially-concentric Traveling Ionospheric Disturbances (TIDs) associated with AGWs launched by convective storms have been reported in Total Electron Content (TEC) data from distributed networks of Global Navigation Satellite System (GNSS) receivers. In this paper, TEC data from GNSS receivers in the COntiguous United States (CONUS) are presented to examine AGWs in the ionosphere generated by a convective thunderstorm on April 28, 2014 over Mississippi (MS) and Tennessee (TN). Our analysis of the TID perturbations in the TEC data shows zonal asymmetry of the wave frequencies. This spectral asymmetry is examined to determine the effects of the background neutral wind on the intrinsic periods of the underlying AGWs. This work shows that if the relative motion of the TID wavefronts and the background neutral wind is in the opposite direction, the intrinsic periods will decrease and if they both travel in the same direction, the intrinsic periods will increase. Furthermore, our results show that the characteristics of the TIDs observed on April 28, 2014 in the TEC over CONUS are consistent with those of underlying AGWs being excited by a point source, such as a deep convection system.


2021 ◽  
Author(s):  
Francisco Brasil ◽  
Pedro Machado ◽  
Gabriella Gilli ◽  
Alejandro Cardesín-Moinelo ◽  
José E. Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document