scholarly journals Impact of Rainfall Microstructure on Erosivity and Splash Soil Erosion Under Simulated Rainfall

10.5772/24086 ◽  
2011 ◽  
Author(s):  
Mohamed A. M. Abd Elbasit ◽  
Hiroshi Yasuda ◽  
Atte Salmi ◽  
Zahoor Ahm
Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 109 ◽  
Author(s):  
MJ Singer ◽  
PH Walker

The 20-100 mm portion of a yellow podzolic soil (Albaqualf) from the Ginninderra Experiment Station (A.C.T.) was used in a rainfall simulator and flume facility to elucidate the interactions between raindrop impact, overland water flow and straw cover as they affect soil erosion. A replicated factorial design compared soil loss in splash and runoff from 50 and 100 mm h-1 rainfall, the equivalent of 100 mm h-1 overland flow, and 50 and 100 mm h-1 rainfall plus the equivalent of 100 mm h-' overland flow, all at 0, 40 and 80% straw cover on a 9% slope. As rainfall intensity increased, soil loss in splash and runoff increased. Within cover levels, the effect of added overland flow was to decrease splash but to increase total soil loss. This is due to an interaction between raindrops and runoff which produces a powerful detaching and transporting mechanism within the flow known as rain-flow transportation. Airsplash is reduced, in part, because of the changes in splash characteristics which accompany changes in depths of runoff water. Rain-flow transportation accounted for at least 64% of soil transport in the experiment and airsplash accounted for no more than 25% of soil transport The effects of rainfall, overland flow and cover treatments, rather than being additive, were found to correlate with a natural log transform of the soil loss data.


CATENA ◽  
2019 ◽  
Vol 177 ◽  
pp. 92-100 ◽  
Author(s):  
Yuxin Liu ◽  
Yan Xin ◽  
Yun Xie ◽  
Wenting Wang

Geomorphology ◽  
2020 ◽  
Vol 349 ◽  
pp. 106896 ◽  
Author(s):  
Mingming Guo ◽  
Wenlong Wang ◽  
Jianming Li ◽  
Yun Bai ◽  
Hongliang Kang ◽  
...  

Soil Research ◽  
2010 ◽  
Vol 48 (1) ◽  
pp. 36 ◽  
Author(s):  
S. Moritani ◽  
T. Yamamoto ◽  
H. Andry ◽  
M. Inoue ◽  
T. Kaneuchi

We investigated a method to measure sheet erosion by characterising the soil erosion of an upland field in a dryland environment. Digital photogrammetry was used to measure the erosion rates of soil surfaces packed to different densities under simulated rainfall or wind conditions. The photogrammetry system consisted of 2 digital cameras, a rainfall simulator, a wind tunnel, and a computer program for 3-dimensional algorithm analysis. First, we assessed the accuracy of our method by comparing conventionally measured data to photogrammetric data under conditions of either no rainfall or no wind application. Two statistical parameters were used to evaluate the soil surface evolution: the mean absolute error (MAE) and the mean relative error (MRE). Their values were 0.21 mm and 15.8%, respectively. We then assessed the precision of our system under simulated rainfall conditions using 3 different dry bulk densities for the packed saturated soil surface. At densities of 0.91, 0.98, and 1.09 g/cm3, the MAE (MRE) values were 2.21 mm (392.5%), 1.07 mm (126.4%), and 0.59 mm (57.6%), respectively. It was possible to monitor and evaluate both the amount of eroded soil and the erosion mechanism in a specific area. Moreover, this system could be applied to measuring wind erosion with an MAE accuracy as high as 0.21 mm. The digital elevation models (DEMs) allowed for detailed analyses of soil surface evolution, and it was also possible to monitor sheet erosion with high spatial and temporal resolutions.


2011 ◽  
Vol 347-353 ◽  
pp. 2094-2097 ◽  
Author(s):  
Pei Qing Xiao ◽  
Wen Yi Yao ◽  
Chang Gao Wang

Runoff, sediment yield and infiltration process of shrub plots were studied under rainfall intensities of 45, 87 and 127 mm/h with 20° slope gradient using simulated rainfall experiment. The results showed that cumulative runoff and cumulative sediment yield of shrub plot had an obvious positive correlation with rainfall time. Under rainfall intensity of 45 mm/h, runoff and sediment yield of shrub plot kept a constant level. Under rainfall intensity of 87 mm/h, runoff kept a fluctuant increase, whereas sediment yield basically kept steady. Under rainfall intensity of 127 mm/h, runoff and sediment yield of shrub plot increased evidently due to the formation of erosion pits. Infiltration rate of shrub plot had a negative relation with runoff as well as sediment yield.


2011 ◽  
Vol 91 (2) ◽  
pp. 279-290 ◽  
Author(s):  
Zisheng Xing ◽  
Lien Chow ◽  
Herb W. Rees ◽  
Fanrui Meng ◽  
John Monteith ◽  
...  

Xing, Z., Chow, L., Rees, H. W., Meng, F., Monteith, J. and Stevens, L. 2011. A comparison of effects of one-pass and conventional potato hilling on water runoff and soil erosion under simulated rainfall. Can. J. Soil Sci. 91: 279–290. Hilling plays an important role in potato production, but is found to be inducing soil loss. An artificial rainfall simulation system was used to evaluate the differences between one-pass hilling (OPH, hilling performed when planting, or shortly after planting) and conventional hilling (CH, hilling performed approximately 35–45 d after planting) as well as their combination with a cover crop (ryegrass; _R) on runoff and soil loss. A three-replicate randomized block experimental design with constant rainfall intensity (120 mm h−1) was used in this study. No significant differences in runoff were found between different hilling methods. The soil losses, however, showed significant differences both among treatments, among canopy cover classes, and among their interaction terms (all P<0.001). The mean soil loss for CH was significantly higher than that for OPH, by 40%, and the mean soil loss for CH_R was higher than that for OPH_R by 57%. On average, the CH treatments (CH and CH_R) induced greater soil loss than the OPH treatments (OPH and OPH_R) by 47%. Further, the effects can vary with different canopy cover percentages. The OPH treatments (OPH and OPH_R) induced more soil loss than CH treatments (CH and CH_R), by 4.4 to 12.8%, in the <30% canopy cover group, while soil loss in the CH treatments was greater than that in OPH treatments for both the 30–70% and >70% canopy cover groups by 21–94%. Irrespective of treatment, soil loss before canopy forming was 2.4 to 8.9 times higher than the soil loss for the partial to full canopy period. With a cover crop, the CH and OPH treatments can reduce soil loss by 37–55%. One-pass hilling initiated runoff earlier than CH. The water runoff and soil loss with respect to the elapsed time since initialization of water runoff and soil loss could be modeled by a three-parameter Sigmoid function with r 2≥0.94. The information generated from this study could be used in landscape modeling to study the impacts of potato production on soil and stream water quality.


2020 ◽  
Vol 72 (6) ◽  
pp. 2372-2380
Author(s):  
Emma Burak ◽  
Ian C. Dodd ◽  
John N. Quinton

2020 ◽  
Vol 204 ◽  
pp. 104714
Author(s):  
Xin Quan ◽  
Jijun He ◽  
Qiangguo Cai ◽  
Liying Sun ◽  
Xueqing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document