A comparison of effects of one-pass and conventional potato hilling on water runoff and soil erosion under simulated rainfall

2011 ◽  
Vol 91 (2) ◽  
pp. 279-290 ◽  
Author(s):  
Zisheng Xing ◽  
Lien Chow ◽  
Herb W. Rees ◽  
Fanrui Meng ◽  
John Monteith ◽  
...  

Xing, Z., Chow, L., Rees, H. W., Meng, F., Monteith, J. and Stevens, L. 2011. A comparison of effects of one-pass and conventional potato hilling on water runoff and soil erosion under simulated rainfall. Can. J. Soil Sci. 91: 279–290. Hilling plays an important role in potato production, but is found to be inducing soil loss. An artificial rainfall simulation system was used to evaluate the differences between one-pass hilling (OPH, hilling performed when planting, or shortly after planting) and conventional hilling (CH, hilling performed approximately 35–45 d after planting) as well as their combination with a cover crop (ryegrass; _R) on runoff and soil loss. A three-replicate randomized block experimental design with constant rainfall intensity (120 mm h−1) was used in this study. No significant differences in runoff were found between different hilling methods. The soil losses, however, showed significant differences both among treatments, among canopy cover classes, and among their interaction terms (all P<0.001). The mean soil loss for CH was significantly higher than that for OPH, by 40%, and the mean soil loss for CH_R was higher than that for OPH_R by 57%. On average, the CH treatments (CH and CH_R) induced greater soil loss than the OPH treatments (OPH and OPH_R) by 47%. Further, the effects can vary with different canopy cover percentages. The OPH treatments (OPH and OPH_R) induced more soil loss than CH treatments (CH and CH_R), by 4.4 to 12.8%, in the <30% canopy cover group, while soil loss in the CH treatments was greater than that in OPH treatments for both the 30–70% and >70% canopy cover groups by 21–94%. Irrespective of treatment, soil loss before canopy forming was 2.4 to 8.9 times higher than the soil loss for the partial to full canopy period. With a cover crop, the CH and OPH treatments can reduce soil loss by 37–55%. One-pass hilling initiated runoff earlier than CH. The water runoff and soil loss with respect to the elapsed time since initialization of water runoff and soil loss could be modeled by a three-parameter Sigmoid function with r 2≥0.94. The information generated from this study could be used in landscape modeling to study the impacts of potato production on soil and stream water quality.

1995 ◽  
Vol 75 (2) ◽  
pp. 227-232 ◽  
Author(s):  
T. L. Chow ◽  
H. W. Rees

Farmers have long considered coarse fragments a hindrance in potato production. Rock picking or crushing has become a routine operation. Using simulated rainfall events and runoff-erosion plots (1 m × 1 m), the effects of coarse-fragment content (0, 7, 15 and 25% by volume) and size (1.0–1.9, 1.9–5.1 and 5.1–7.6-cm diam) on runoff, infiltration and soil loss were evaluated on an Orthic Dystric Brunisol. Study objectives were to quantify the influence of coarse fragments on soil erosion and to convert these relationships into mathematical equations for use with existing models to predict soil loss. Although there were only marginal increases in infiltration and reductions in runoff attributable to increasing content and size of coarse fragments, the rate of soil loss from the control was higher than that from all other treatments. In general, the rate of soil loss decreased with increasing content and size of coarse fragments. The effects of content and size of coarse fragments on soil-loss reduction, either individually or in combination, were expressed mathematically with correlation coefficients greater than 0.82. The study also revealed that for a given volumetric coarse-fragment content, the percentage surface cover increased with increasing coarse-fragment size. This finding has important practical implications because most reporting of coarse fragments is done on the basis of volume rather than percentage surface cover. Key words: Rock content, rock size, rainfall simulator, infiltration, soil loss


Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 61
Author(s):  
Abelardo A.A. Montenegro ◽  
Thayná A.B. Almeida ◽  
Cleene A. de Lima ◽  
João R.C.B. Abrantes ◽  
João L.M.P. de Lima

This paper aims to investigate the performance of mulch cover with coir dust (Cocos nucifera L.) and cover crop with Palma cactus (Opuntia ficus indica Mill.) as soil and water conservation techniques, in a laboratory soil flume under simulated rainfall. Palma cactus plants oriented at 90° and 30° angles with the slope direction were considered. Simulations comprised uniform advanced and delayed rainfall patterns. Runoff hydrographs and soil loss were monitored at the downstream end of the flume. Soil moisture and flow velocity were measured, and several hydraulic parameters of runoff were estimated. Results show that both mulch cover with coir dust and cover crop with Palma cactus were effective in reducing runoff and soil loss and increasing soil moisture content, thus being both suitable soil and water conservation techniques for semiarid environments. Coir dust was more effective than Palma cactus. Palma cactus oriented at a 90° angle was slightly more effective than Palma cactus oriented at a 30° angle. Differences between advanced and delayed rainfall patterns on the hydrological and erosive response were more pronounced for the mulch cover condition, where no runoff and soil loss were observed at the downstream end of the flume for the advanced rainfall pattern.


Author(s):  
Nguyễn Quang Việt ◽  
Trương Đình Trọng ◽  
Hồ Thị Nga

Vinh Linh, the northern district of Quang Tri province is characterized by a diversified topography with a large variety of elevations, high rainfall, and decreasing land cover due to forest exploiting for cultivation land. Thus, there is a high risk of erosion, soil fertility washout. With the support of GIS technology, the authors used the rMMF model to measure soil erosion. The input data of model including 15 coefficients related to topography, soil properties, climate and land cover. The simulations of rMMF include estimates of rainfall energy, runoff, soil particle detachment by raindrop, soil particle detachment by runoff, sediment transport capacity of runoff and soil loss. The result showed that amount of soil loss in year is estimated to vary between 0 kg/m2 minimum and 149 kg/m2 maximum and is divided into 4-classes of erosion. Light class almost covers the region researched (75.9% of total area), while moderate class occupies 8.1% of total area, strong classes only hold small area (16% of total area). Therefore, protection of the forest floor in sloping areas is one of the most effective methods to reduce soil erosion.


Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 109 ◽  
Author(s):  
MJ Singer ◽  
PH Walker

The 20-100 mm portion of a yellow podzolic soil (Albaqualf) from the Ginninderra Experiment Station (A.C.T.) was used in a rainfall simulator and flume facility to elucidate the interactions between raindrop impact, overland water flow and straw cover as they affect soil erosion. A replicated factorial design compared soil loss in splash and runoff from 50 and 100 mm h-1 rainfall, the equivalent of 100 mm h-1 overland flow, and 50 and 100 mm h-1 rainfall plus the equivalent of 100 mm h-' overland flow, all at 0, 40 and 80% straw cover on a 9% slope. As rainfall intensity increased, soil loss in splash and runoff increased. Within cover levels, the effect of added overland flow was to decrease splash but to increase total soil loss. This is due to an interaction between raindrops and runoff which produces a powerful detaching and transporting mechanism within the flow known as rain-flow transportation. Airsplash is reduced, in part, because of the changes in splash characteristics which accompany changes in depths of runoff water. Rain-flow transportation accounted for at least 64% of soil transport in the experiment and airsplash accounted for no more than 25% of soil transport The effects of rainfall, overland flow and cover treatments, rather than being additive, were found to correlate with a natural log transform of the soil loss data.


2013 ◽  
Vol 1 (No. 1) ◽  
pp. 10-15 ◽  
Author(s):  
Jakubíková Alena ◽  
Tippl Miloslav Janeček and Martin

To determine specific characteristics necessary for the computation of the C factor in RUSLE for timevariable crops, measurements were carried out in fields with selected agricultural crops grown by conventional practices. Sloping plots on an experimental area in Třebsin locality and farm fields were used to measure surface runoff and soil loss by erosion in conditions of natural and simulated rainfall. Basic characteristics to compute the C factor were determined in the particular growth phases of selected crops &ndash; sunflower, flax, poppy and rape. Effective root mass, canopy cover and fall height of rain drops were measured.


Soil Research ◽  
2010 ◽  
Vol 48 (1) ◽  
pp. 36 ◽  
Author(s):  
S. Moritani ◽  
T. Yamamoto ◽  
H. Andry ◽  
M. Inoue ◽  
T. Kaneuchi

We investigated a method to measure sheet erosion by characterising the soil erosion of an upland field in a dryland environment. Digital photogrammetry was used to measure the erosion rates of soil surfaces packed to different densities under simulated rainfall or wind conditions. The photogrammetry system consisted of 2 digital cameras, a rainfall simulator, a wind tunnel, and a computer program for 3-dimensional algorithm analysis. First, we assessed the accuracy of our method by comparing conventionally measured data to photogrammetric data under conditions of either no rainfall or no wind application. Two statistical parameters were used to evaluate the soil surface evolution: the mean absolute error (MAE) and the mean relative error (MRE). Their values were 0.21 mm and 15.8%, respectively. We then assessed the precision of our system under simulated rainfall conditions using 3 different dry bulk densities for the packed saturated soil surface. At densities of 0.91, 0.98, and 1.09 g/cm3, the MAE (MRE) values were 2.21 mm (392.5%), 1.07 mm (126.4%), and 0.59 mm (57.6%), respectively. It was possible to monitor and evaluate both the amount of eroded soil and the erosion mechanism in a specific area. Moreover, this system could be applied to measuring wind erosion with an MAE accuracy as high as 0.21 mm. The digital elevation models (DEMs) allowed for detailed analyses of soil surface evolution, and it was also possible to monitor sheet erosion with high spatial and temporal resolutions.


CATENA ◽  
2008 ◽  
Vol 74 (1) ◽  
pp. 73-79 ◽  
Author(s):  
L. Martínez-Zavala ◽  
A. Jordán López ◽  
N. Bellinfante

2014 ◽  
Vol 38 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Pedro Luiz Terra Lima ◽  
Marx Leandro Naves Silva ◽  
Nilton Curi ◽  
John Quinton

Adequate soil management can create favorable conditions to reduce erosion and water runoff, consequently increase water soil recharge. Among management systems intercropping is highly used, especially for medium and small farmers. It is a system where two or more crops with different architectures and vegetative cycles are explored simultaneously at the same location. This research investigated the effects of maize intercropped with jack bean on soil losses due to water erosion, estimate C factor of Universal Soil Losses Equation (USLE) and how it can be affected by soil coverage. The results obtained also contribute to database generation, important to model and estimate soil erosion. Total soil loss by erosion caused by natural rain, at Lavras, Minas Gerais, Brazil, were: 4.20, 1.86, 1.38 and 1.14 Mg ha-1, respectively, for bare soil, maize, jack bean and the intercropping of both species, during evaluated period. Values of C factor of USLE were: 0.039, 0.054 and 0.077 Mg ha Mg-1 ha-1 for maize, jack bean and intercropping between both crops, respectively. Maize presented lower vegetation cover index, followed by jack beans and consortium of the studied species. Intercropping between species showed greater potential on soil erosion control, since its cultivation resulted in lower soil losses than single crops cultivation, and this aspect is really important for small and medium farmers in the studied region.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 462C-462
Author(s):  
Michelle L. Infante-Casella ◽  
Steven A. Garrison

Many squash varieties are large-seeded and may be well-suited for planting under no-till production systems. A study was done at the Rutgers Agricultural Research and Extension Center in Bridgeton, N.J., to evaluate the yield and loss of soil when butternut squash (BS) (Cucurbita moschata `Waltham') was grown using no-till (NT), strip-till (ST), and bare ground (BG) tillage systems. The soil was a Sassafrass gravely sand loam and the field had a 3% slope. A cover crop mixture of hairy vetch and winter rye planted on 23 Sept. 1998 using a Brillion seeder at a rate of 136.2 kg/ha and 610.2 kg/ha, respectively, was used to create the NT and ST plots. NT and ST plots containing the cover crop mixture were killed with Glyphosate and chopped using a Buffalo stalk chopper on 27 May. BG plots were tilled clean before planting and ST plots were rototilled to a 30.48 cm band to establish a seedbed. BS seeds were hand-planted on 7 July with a spacing of 38.1 cm between plants and 182.9 cm between rows. Irrigation was applied overhead at a rate of 6.28 cm/ha weekly. Erosion was measured using inverted pans over the soil area to be measured. Harvest took place on 21Oct. and yields included only marketable fruit with the following results: NT = 8.65 t/ha; ST = 8.99 t/ha; BG = 4.06 t/ha. Yields in the NT and ST plots were significantly higher than yields in the BG plots. Soil erosion measurements were taken on 21 Oct. Soil loss results from the plots were 0.08 cm (NT), 0.84 cm (ST), and 3.33 cm (BG). Soil loss, mainly due to water erosion, was significantly higher in the BG plots. BS yields can be significantly higher when using alternative tillage systems like NT and ST. When using NT and ST systems for the production of BS, soil erosion is reduced


2014 ◽  
Vol 3 (2) ◽  
pp. 1-11
Author(s):  
Hamdan Al Mahmoud ◽  
Khouri Al Issam ◽  
Arslan Awadis

This research was conducted through the rain season 2009 -2010, in Mehasseh Research Center at (Al Qaryatein), The area is characterized by a hot and dry climate in summer and cold in winter with an annual average rainfall of 114 mm. Three slopes (8%, 6%, 4%) were used in semicircular bunds water -harvesting techniques with bunds parallel to the contours lines at flow distance of 18, 12 and 6 m. The bunds were planted with Atriplex Halimus seedlings. Graded metal rulers were planted inside the bunds to determine soil loss and sedimentation associated with the surface runoff, and metallic tanks were placed at the end of the flow paths to determine agricultural soil loss from water runoff. A rain intensity gauge was placed near the experiment site to determine the rainfall intensity that produced runoff. The treatments were done in three replications. The amount of soil erosion (in tons per hectare per year) increased with increasing of the slope, the highest recorded value was 38.66 at slope of 8% and the lowest 0.05 at 4% slope. The amount of soil erosion also increased with increasing of water run distance, which was 38.66 T.ha-1.yr-1 at 18 m and 0.05 T.ha-1.yr-1 at 6 m . Bunds with different diameter of water harvesting reduced soil erosion by about 65% at slope of 8%, 55% at 6%, and 46% at 4%. The input parameters of Universal soil-loss equation were found to be suitable for determining soil erosion in this arid and semi-arid region. DOI: http://dx.doi.org/10.3126/ije.v3i2.10499 International Journal of the Environment Vol.3(2) 2014: 1-11


Sign in / Sign up

Export Citation Format

Share Document