scholarly journals Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses

10.5772/37415 ◽  
2012 ◽  
Author(s):  
Vladimir L.
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jaka Petelin ◽  
Luka Černe ◽  
Jaka Mur ◽  
Vid Agrež ◽  
Jernej Jan Kočica ◽  
...  

Abstract In this manuscript we present a true pulse-on-demand laser design concept using two different approaches. First, we present a fiber master oscillator power amplifier (MOPA) based quasi-continuous wave (CW) laser, working at high modulation bandwidths, for generation of nanosecond pulses. Second, we present a hybrid chirped pulse amplification (CPA)-based laser, combining a chirped-pulse fiber amplifier and an additional solid-state amplifier, for generation of femtosecond pulses. The pulse-on-demand operation is achieved without an external optical modulator/shutter at high-average powers and flexible repetition rates up to 40 MHz, using two variants of the approach for near-constant gain in the amplifier chain. The idler and marker seed sources are combined in the amplifier stages and separated at the out using either wavelength-based separation or second harmonic generation (SHG)-generation-based separation. The nanosecond laser source is further applied to high throughput processing of thin film materials. The laser is combined with a resonant scanner, using the intrinsic pulse-on-demand operation to compensate the scanner’s sinusoidal movement. We applied the setup to processing of indium tin oxide (ITO) and metallic films on flexible substrates.


2020 ◽  
Vol 8 ◽  
Author(s):  
François Lureau ◽  
Guillaume Matras ◽  
Olivier Chalus ◽  
Christophe Derycke ◽  
Thomas Morbieu ◽  
...  

Abstract We report on a two-arm hybrid high-power laser system (HPLS) able to deliver 2 × 10 PW femtosecond pulses, developed at the Bucharest-Magurele Extreme Light Infrastructure Nuclear Physics (ELI-NP) Facility. A hybrid front-end (FE) based on a Ti:sapphire chirped pulse amplifier and a picosecond optical parametric chirped pulse amplifier based on beta barium borate (BBO) crystals, with a cross-polarized wave (XPW) filter in between, has been developed. It delivers 10 mJ laser pulses, at 10 Hz repetition rate, with more than 70 nm spectral bandwidth and high-intensity contrast, in the range of 1013:1. The high-energy Ti:sapphire amplifier stages of both arms were seeded from this common FE. The final high-energy amplifier, equipped with a 200 mm diameter Ti:sapphire crystal, has been pumped by six 100 J nanosecond frequency doubled Nd:glass lasers, at 1 pulse/min repetition rate. More than 300 J output pulse energy has been obtained by pumping with only 80% of the whole 600 J available pump energy. The compressor has a transmission efficiency of 74% and an output pulse duration of 22.7 fs was measured, thus demonstrating that the dual-arm HPLS has the capacity to generate 10 PW peak power femtosecond pulses. The reported results represent the cornerstone of the ELI-NP 2 × 10 PW femtosecond laser facility, devoted to fundamental and applied nuclear physics research.


2010 ◽  
Vol 35 (20) ◽  
pp. 3480 ◽  
Author(s):  
Damien Bigourd ◽  
Laure Lago ◽  
Arnaud Mussot ◽  
Alexandre Kudlinski ◽  
Jean-François Gleyze ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document