amplification system
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 89)

H-INDEX

40
(FIVE YEARS 5)

2021 ◽  
Vol 8 ◽  
Author(s):  
Shao-Feng Xu ◽  
Zhu-Long Xu ◽  
Kuo-Chih Chuang

In this work, without introducing mass-in-mass units or inertial amplification mechanisms, we show that two Bragg atomic chains can form an acoustic metamaterial that possesses different types of bandgaps other than Bragg ones, including local resonance and inertial amplification-like bandgaps. Specifically, by coupling masses of one monatomic chain to the same masses of a diatomic or triatomic chain, hybrid bandgaps can be generated and further be switched through the adjustment of the structural parameters. To provide a tuning guidance for the hybrid bandgaps, we derived an analytical transition parameter (p-value) for the mass-coupled monatomic/diatomic chain and analytical discriminants for the mass-coupled monatomic/triatomic chain. In our proposed mass-coupled monatomic/triatomic chain system, each set of analytical discriminants determines a hybrid bandgap state and a detailed examination reveals 14 different bandgap states. In addition to bandgap switching, the analytical p-value and discriminants can also be used as a guide for designing the coupled-chain acoustic metamaterials. The relations between the mass-coupled monatomic/triatomic chain system and a three-degree-of-freedom (DOF) inertial amplification system further indicate that the band structure of the former is equivalent to that of the latter through coupling masses by negative dynamic stiffness springs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenhao Ran ◽  
Zhihui Ren ◽  
Pan Wang ◽  
Yongxu Yan ◽  
Kai Zhao ◽  
...  

AbstractPolarized light can provide significant information about objects, and can be used as information carrier in communication systems through artificial modulation. However, traditional polarized light detection systems integrate polarizers and various functional circuits in addition to detectors, and are supplemented by complex encoding and decoding algorithms. Although the in-plane anisotropy of low-dimensional materials can be utilized to manufacture polarization-sensitive photodetectors without polarizers, the low anisotropic photocurrent ratio makes it impossible to realize digital output of polarized information. In this study, we propose an integrated polarization-sensitive amplification system by introducing a nanowire polarized photodetector and organic semiconductor transistors, which can boost the polarization sensitivity from 1.24 to 375. Especially, integrated systems are universal in that the systems can increase the anisotropic photocurrent ratio of any low-dimensional material corresponding to the polarized light. Consequently, a simple digital polarized light communication system can be realized based on this integrated system, which achieves certain information disguising and confidentiality effects.


Author(s):  
Yu-Chih Lin ◽  
Li-Chin Tsai ◽  
Kuo-Lan Liu ◽  
Nu-En Huang ◽  
Lih-Jing Yang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Justine Pallu ◽  
Charlie Rabin ◽  
Pan Hui ◽  
Thamires Moreira ◽  
Corentin Calvet ◽  
...  

The strength of autocatalytic reactions lies in their ability to provide a powerful means of molecular amplification, which can be very useful for improving the analytical performances of a multitude of analytical and bioanalytical methods. However, one of the major difficulties in designing an efficient autocatalytic amplification system is the requirement for reactants that are both highly reactive and chemically stable in order to avoid limitations imposed by undesirable background amplifications. In the present work, we devised a reaction network based on a redox cross-catalysis principle, in which two catalytic loops activate each other. The first loop, catalyzed by H2O2, involves the oxi-dative deprotection of a naphthylboronate ester probe into a redox-active naphthohydroquinone, which in turn catalyzes the production of H2O2 by redox cycling in the presence of a reducing enzyme/substrate couple. We present here a set of new molecular probes with improved reactivity and stability, resulting in particularly steep sigmoidal kinetic traces and enhanced discrimination between specific and nonspecific responses. This translates into the sensitive de-tection of H2O2 down to a few nM in less than 10 minutes or a redox cycling compound such as the 2-amino-3-chloro-1,4-naphthoquinone H2O2 down to 50 pM in less than 30 minutes. The critical reason leading to these remarkably good performances is the extended stability stemming from the double masking of the naphthohydroquinone core by two boronate groups, a counterintuitive strategy if we consider the need for two equivalents of H2O2 for full deprotection. An in-depth study of the mechanism and dynamics of this complex reaction network is conducted in order to better understand, predict and optimize its functioning. From this investigation, the time response as well as detection limit are found highly dependent on pH, nature of buffer, and concentration of the reducing enzyme.


Author(s):  
Zhijun Huang ◽  
Naizhi Yao ◽  
Xiaoting Li ◽  
Yonghui Tian ◽  
Yixiang Duan

Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 386
Author(s):  
Mario Moisés Alvarez ◽  
Sergio Bravo-González ◽  
Everardo González-González ◽  
Grissel Trujillo-de Santiago

Loop-mediated isothermal amplification (LAMP) has been recently studied as an alternative method for cost-effective diagnostics in the context of the current COVID-19 pandemic. Recent reports document that LAMP-based diagnostic methods have a comparable sensitivity and specificity to that of RT-qPCR. We report the use of a portable Arduino-based LAMP-based amplification system assisted by pH microelectrodes for the accurate and reliable diagnosis of SARS-CoV-2 during the first 3 min of the amplification reaction. We show that this simple system enables a straightforward discrimination between samples containing or not containing artificial SARS-CoV-2 genetic material in the range of 10 to 10,000 copies per 50 µL of reaction mix. We also spiked saliva samples with SARS-CoV-2 synthetic material and corroborated that the LAMP reaction can be successfully monitored in real time using microelectrodes in saliva samples as well. These results may have profound implications for the design of real-time and portable quantitative systems for the reliable detection of viral pathogens including SARS-CoV-2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuanglin Li ◽  
Jinfeng Lin ◽  
Honglei Hao ◽  
Haiying Jin ◽  
Danlu Song ◽  
...  

The SureID®S6 system used a lyophilized pellet as the amplification reagent to enable multiplexing of sex-determining marker Amelogenin, 21 autosomal short tandem repeats (STRs), and one Y-STR. To assess the performance, reliability, and limitation of the dry amplification system, the validation studies including PCR condition, reproducibility, sizing and precision, analytical threshold calculation, sensitivity and stochastic threshold calculation, species specificity, stability, mixture, case sample, and population and concordance were conducted according to the Scientific Working Group on DNA Analysis Methods (SWGDAM) Validation Guidelines. Experimental data suggested that the optimal range of total input DNA was from 125 to 500 pg; the appropriate analytical threshold was 80 relative fluorescence units (RFUs) while the stochastic threshold was 260 RFUs; for the stability studies, SureID®S6 system could resist against less than 500 μmol/L of hematin, 100 ng/μl of humic acid, 4 mM of indigotin, 800 mM of tannic acid, and 800 mM of calcium ion. Population and concordance studies using 500 unrelated individuals showed that the combined probability of discrimination (CPD) and cumulative probability of exclusion (CPE) values were 0.999999999999 and 0.999999998416, respectively. The genotypes for the same sample were concordant with the previously validated HUAXIA™ Platinum kit. The validation results demonstrated that the SureID®S6 system could be used for forensic applifications.


Sign in / Sign up

Export Citation Format

Share Document