scholarly journals Low‐Noise Airfoil and Wind Turbine Design

Author(s):  
Wei Jun Zhu ◽  
Wen Zhong Shen ◽  
Jens Nørkær Sørensen
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis

When selecting a design for an unmanned aerial vehicle, the choice of the propulsion system is vital in terms of mission requirements, sustainability, usability, noise, controllability, reliability and technology readiness level (TRL). This study analyses the various propulsion systems used in unmanned aerial vehicles (UAVs), paying particular focus on the closed-cycle propulsion systems. The study also investigates the feasibility of using helium closed-cycle gas turbines for UAV propulsion, highlighting the merits and demerits of helium closed-cycle gas turbines. Some of the advantages mentioned include high payload, low noise and high altitude mission ability; while the major drawbacks include a heat sink, nuclear hazard radiation and the shield weight. A preliminary assessment of the cycle showed that a pressure ratio of 4, turbine entry temperature (TET) of 800 °C and mass flow of 50 kg/s could be used to achieve a lightweight helium closed-cycle gas turbine design for UAV mission considering component design constraints.


2012 ◽  
Vol 55 (3-4) ◽  
pp. 396-404 ◽  
Author(s):  
Tugrul U. Daim ◽  
Elvan Bayraktaroglu ◽  
Judith Estep ◽  
Dong Joon Lim ◽  
Jubin Upadhyay ◽  
...  
Keyword(s):  

2013 ◽  
Vol 7 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Alessio Balleri ◽  
Allann Al‐Armaghany ◽  
Hugh Griffiths ◽  
Kinfai Tong ◽  
Takashi Matsuura ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 24-29
Author(s):  
Najma Safienatin Najah ◽  
Arief Muliawan ◽  
Febria Anita

A horizontal axis wind turbine design research has been carried out using an inverter. This study aims to generate the output power generated by the generator through an inverter. So that the use of an inverter can turn on the 10 watt lamp. From the research results obtained turbine rotation varied between 1357 rpm to 2415 rpm producing a generator voltage of 3.05 volts to 4.61 volts and generator currents 32mA up to 49 mA. The inverter produces a voltage of 16.57 volts up to 20.46 volts and an inverter current of 0.60 amperes up to 0.48 amperes. The greater the rotation of the wind turbine turbine, the greater the generator voltage generated and so is the voltage of the inverter. While the current will increase as the turbine rotation increases and the inverse of the inverter current will decrease as the turbine rotation increases.


2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


Sign in / Sign up

Export Citation Format

Share Document