scholarly journals Synthesis of Nanometal Oxide–Coated Cotton Composites

10.5772/63505 ◽  
2016 ◽  
Author(s):  
Issa M. El Nahhal ◽  
Abdelraouf A. Elmanama ◽  
Nadia M. Amara
Keyword(s):  
Cellulose ◽  
2021 ◽  
Author(s):  
Deshan Cheng ◽  
Yuhang Liu ◽  
Changwang Yan ◽  
Yang Zhou ◽  
Zhongmin Deng ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 489
Author(s):  
Hyun-Seok Jang ◽  
Min-Soo Moon ◽  
Byung-Hoon Kim

Demand for wearable and portable electronic devices has increased, raising interest in electronic textiles (e-textiles). E-textiles have been produced using various materials including carbon nanotubes, graphene, and graphene oxide. Among the materials in this minireview, we introduce e-textiles fabricated with graphene oxide (GO) coating, using commercial textiles. GO-coated cotton, nylon, polyester, and silk are reported. The GO-coated commercial textiles were reduced chemically and thermally. The maximum e-textile conductivity of about 10 S/cm was achieved in GO-coated silk. We also introduce an e-textile made of uncoated silk. The silk-based e-textiles were obtained using a simple heat treatment with axial tension. The conductivity of the e-textiles was over 100 S/cm.


2014 ◽  
Vol 110 ◽  
pp. 367-373 ◽  
Author(s):  
Franco Ferrero ◽  
Cinzia Tonetti ◽  
Monica Periolatto
Keyword(s):  

2018 ◽  
Vol 199 ◽  
pp. 390-396 ◽  
Author(s):  
Quan-Yong Cheng ◽  
Cheng-Shu Guan ◽  
Meng Wang ◽  
Yi-Dong Li ◽  
Jian-Bing Zeng

Cellulose ◽  
2018 ◽  
Vol 25 (12) ◽  
pp. 7393-7407 ◽  
Author(s):  
Mohamad M. Ayad ◽  
Wael A. Amer ◽  
Sawsan Zaghlol ◽  
Nela Maráková ◽  
Jaroslav Stejskal

Nano Energy ◽  
2019 ◽  
Vol 55 ◽  
pp. 305-315 ◽  
Author(s):  
Bhaskar Dudem ◽  
Anki Reddy Mule ◽  
Harishkumar Reddy Patnam ◽  
Jae Su Yu

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tong Xu ◽  
Di Qian ◽  
Yelei Hu ◽  
Yuanzhao Zhu ◽  
Yi Zhong ◽  
...  

In this study, a kind of inorganic composite flame retardant (Sep@Fe2O3) was prepared by combining solution deposition and calcination methods using sepiolite microfiber material as carrier. This inorganic compound flame retardant was combined with waterborne polyurethane (WPU) through layer-by-layer method to prepare WPU composites. The SEM and EDS, TEM, and XRD were used to characterize the microscopic morphology and crystal structure of WPU composites. Thermogravimetric analysis tests confirmed the good thermal stability of WPU/Sep@Fe2O3 composites; at the temperature of 600°C, the carbon residual percentage of WPU/Sep, WPU/Fe2O3, and WPU/Sep@Fe2O3 composites is 7.3%, 12.2%, and 13.4%, respectively, higher than that of WPU (1.4%). Vertical combustion tests proved better flame-retardant property of WPU/Sep@Fe2O3 composite-coated cotton than noncoated cotton. The microcalorimeter test proved that the PHRR of WPU/Sep@Fe2O3 composites decreased by 61% compared with that of WPU. In addition, after combining with Sep@Fe2O3, the breaking strength of WPU increased by 35%.


Sign in / Sign up

Export Citation Format

Share Document