scholarly journals Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations

10.5772/8201 ◽  
2009 ◽  
Author(s):  
Zanariah Abdul ◽  
Mohamed Suleim

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Hazizah Mohd Ijam ◽  
Mohamed Suleiman ◽  
Ahmad Fadly Nurullah Rasedee ◽  
Norazak Senu ◽  
Ali Ahmadian ◽  
...  

We describe the development of a 2-point block backward difference method (2PBBD) for solving system of nonstiff higher-order ordinary differential equations (ODEs) directly. The method computes the approximate solutions at two points simultaneously within an equidistant block. The integration coefficients that are used in the method are obtained only once at the start of the integration. Numerical results are presented to compare the performances of the method developed with 1-point backward difference method (1PBD) and 2-point block divided difference method (2PBDD). The result indicated that, for finer step sizes, this method performs better than the other two methods, that is, 1PBD and 2PBDD.



2018 ◽  
Vol 11 (3) ◽  
pp. 1-12
Author(s):  
S. J. Kayode ◽  
O. S. Ige ◽  
F. O. Obarhua ◽  
E. O. Omole


Author(s):  
Peter E Kloeden ◽  
Arnulf Jentzen

Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) with a stochastic process in their vector field. They can be analysed pathwise using deterministic calculus, but since the driving stochastic process is usually only Hölder continuous in time, the vector field is not differentiable in the time variable, so traditional numerical schemes for ODEs do not achieve their usual order of convergence when applied to RODEs. Nevertheless deterministic calculus can still be used to derive higher order numerical schemes for RODEs via integral versions of implicit Taylor-like expansions. The theory is developed systematically here and applied to illustrative examples involving Brownian motion and fractional Brownian motion as the driving processes.





Sign in / Sign up

Export Citation Format

Share Document