scholarly journals Dilute Magnetic Semiconducting Quantum Dots: Smart Materials for Spintronics

Author(s):  
Jejiron Maheswari Baruah ◽  
Jyoti Narayan
Keyword(s):  
2021 ◽  
pp. 102-113
Author(s):  
Adrian P Sutton

Materials design brings together the engineering requirements of a material for an application with the science of the relationships between the structure, properties and method of fabrication of the material. It also takes into account the conditions into which the material will be put in service. It is different from materials selection and materials discovery. The concepts of microstructure and materials as complex systems are introduced. An example is given of materials design using a systems approach. Some materials are produced by self-assembly, as illustrated by the bubble raft, photonic crystals and quantum dots. Self-healing materials and self-cleaning glass are two examples of smart materials.


Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

Sign in / Sign up

Export Citation Format

Share Document