cdse quantum dots
Recently Published Documents


TOTAL DOCUMENTS

1560
(FIVE YEARS 209)

H-INDEX

94
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Donovan Thomas ◽  
Harold O. Lee ◽  
Kevin C. Santiago ◽  
Marvin Pelzer ◽  
Ayodeji Kuti ◽  
...  

UV-Vis spectroscopy and PL data show that structural incorporation of Eu3+ has an effect on the optical properties of CdSe QDs via energy transfer from host to dopant. This allows for QDs with tunable optical properties via numerous pathways.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3331
Author(s):  
Ekaterina Kolesova ◽  
Anastasia Bulgakova ◽  
Vladimir Maslov ◽  
Andrei Veniaminov ◽  
Aliaksei Dubavik ◽  
...  

Titania nanoparticle/CdSe quantum dot hybrid structures are a promising bactericidal coating that exhibits a pronounced effect against light-sensitive bacteria. Here, we report the results of a comprehensive study of the photophysical properties and bactericidal functionality of these hybrid structures on various bacterial strains. We found that our structures provide the efficient generation of superoxide anions under the action of visible light due to electron transfer from QDs to titania nanoparticles with ~60% efficiency. We also tested the antibacterial activity of hybrid structures on five strains of bacteria. The formed structures combined with visible light irradiation effectively inhibit the growth of Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis bacteria, the last of which is a photosensitive causative agent model of tuberculosis.


2021 ◽  
Vol 15 (04) ◽  
Author(s):  
David French ◽  
Meredith Magee ◽  
Miles Furr ◽  
Joseph B. Herzog

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2810
Author(s):  
Xinpeng Yan ◽  
Zhong Zhang ◽  
Runguang Zhang ◽  
Tian Yang ◽  
Guoying Hao ◽  
...  

Given the imperative of monitoring organophosphorus pesticides (OPs) residues in the ecosystem, here a novel, facile and sensitive fluorescence sensor is presented for the rapid detection of dimethoate. In this work, surface molecularly imprinted polymer (SMIP) and microfluidic technology had been introduced to enhance the selectivity and portability of the described methodology. Oil-soluble CdSe quantum dots (QDs) synthesized in a green way were used as fluorescent material for the selective detection of dimethoate on the basis of static quenching and photoinduced electron transfer mechanism. Among many kinds of paper materials, glass fiber paper was used as the novel substrate of paper chip due to low pristine fluorescence and better performance when combining CdSe QDs. In the process of molecular imprinting, the interaction between several functional monomers and dimethoate molecule was investigated and simulated theoretically by software to improve the selectivity of the sensor. Consequently, the fabricated novel detection platform could effectively respond to dimethoate in 10 min with the concentration range of 0.45–80 μmol/L and detection limit of 0.13 μmol/L. The recovery in the spiked experiment soybean sample was in an acceptable range (97.6–104.1%) and the accuracy was verified by gas chromatography-mass spectrometry, which signified the feasibility and potential in food sampling.


2021 ◽  
Vol 9 (2) ◽  
pp. 38-41
Author(s):  
Khalid N. Sediq

Two-dimensional photonic crystal nanocavities were designed to tailor cavity quantum electrodynamics. Enhancing the spontaneous emission of low-quality factor nanocavity with embedded CdSe quantum dots (QDs) emitters is the aim of this study. Low concentration layer of CdSe QDs was sandwiched between two layers of Si2 N3 membrane using plasma-enhanced chemical vapor deposition. The modification rate in spontaneous emission of L3 nanocavity up to 2.3-fold has been observed at 629.5 nm in compare to bare cavities. High field confinement in the sub-wavelength regime became an interest field for quantum electrodynamics applications and good platform to study light matter interactions.


Sign in / Sign up

Export Citation Format

Share Document