scholarly journals Fixed Point Theory Approach to Existence of Solutions with Differential Equations

Author(s):  
Piyachat Borisut ◽  
Konrawut Khammahawong ◽  
Poom Kumam
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
O. Zentar ◽  
M. Ziane ◽  
S. Khelifa

Abstract The purpose of this work is to investigate the existence of solutions for a system of random differential equations involving the Riemann–Liouville fractional derivative. The existence result is established by means of a random abstract formulation to Sadovskii’s fixed point theorem principle [A. Baliki, J. J. Nieto, A. Ouahab and M. L. Sinacer, Random semilinear system of differential equations with impulses, Fixed Point Theory Appl. 2017 2017, Paper No. 27] combined with a technique based on vector-valued metrics and convergent to zero matrices. An example is also provided to illustrate our result.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Mohamed Hannabou ◽  
Khalid Hilal

This paper studies the existence of solutions for a system of coupled hybrid fractional differential equations. We make use of the standard tools of the fixed point theory to establish the main results. The existence and uniqueness result is elaborated with the aid of an example.


Filomat ◽  
2014 ◽  
Vol 28 (10) ◽  
pp. 2149-2162 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris Ntouyas ◽  
Hamed Alsulami

In this paper, a class of boundary value problems of nonlinear nth-order differential equations and inclusions with nonlocal and integral boundary conditions is studied. New existence results are obtained by means of some fixed point theorems. Examples are given for the illustration of the results.


Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

AbstractIn this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα -Ulam-Hyers stability of the presented problem. Also, we use the generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of the δ-approximate solution.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 672 ◽  
Author(s):  
Mouffak Benchohra ◽  
Soufyane Bouriah ◽  
Juan J. Nieto

We present in this work the existence results and uniqueness of solutions for a class of boundary value problems of terminal type for fractional differential equations with the Hilfer–Katugampola fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Banach contraction principle and Krasnoselskii’s fixed point theorem. We illustrate our main findings, with a particular case example included to show the applicability of our outcomes.


2000 ◽  
Vol 61 (3) ◽  
pp. 439-449 ◽  
Author(s):  
Donal O'Regan

A variety of fixed point results are presented for weakly sequentially upper semicontinuous maps. In addition an existence result is established for differential equations in Banach spaces relative to the weak topology.


Sign in / Sign up

Export Citation Format

Share Document