scholarly journals Modeling and Analysis of Molten Pool Behavior for Submerged Arc Welding Process with Single and Multi-Wire Electrodes

Author(s):  
Dae-Won Cho
2014 ◽  
Vol 214 (11) ◽  
pp. 2233-2247 ◽  
Author(s):  
Dae-Won Cho ◽  
Degala Venkata Kiran ◽  
Woo-Hyun Song ◽  
Suck-Joo Na

2011 ◽  
Vol 110-116 ◽  
pp. 3191-3198
Author(s):  
Sadegh Moeinifar

The high-strength low-alloy microalloyed steel was procured as a hot rolled plate with accelerated cooling. The Gleeble thermal simulated process involved heating the steel specimens to the peak temperature of 1400 °C, with constant cooling rates of 3.75 °C/s and 2 °C/s to room temperature. The four-wire tandem submerged arc welding process, with different heat input, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat affected zone regions. The martensite/austenite constituents were obtained by a combination of field emission scanning electron microscopes and image analysis software The Charpy absorbed energy of specimens was assessed using Charpy impact testing at-50 °C. Brittle particles, such as martensite/austenite constituent along the grain boundaries, can make an easy path for crack propagation. Similar crack initiation sites and growth mechanism were investigated for specimens welded with different heat input values.


2012 ◽  
Vol 622-623 ◽  
pp. 315-318
Author(s):  
Aparesh Datta ◽  
Subodh Debbarma ◽  
Subhash Chandra Saha

The quality of joining has assumed a greater role in fabrication of metal in recent years, because of the development of new alloys with tremendously increased strength and toughness. Submerged arc welding is a high heat input fusion welding process in which weld is produced by moving localized heat source along the joint. The weld quality in turn affected by thermal cycle that the weldment experiences during the welding. In the present study a simple comprehensive mathematical model has been developed using a moving heat source and analyzing the temperature on one section and then the temperature distribution of other section are correlated with time delay with reference analyzed section.


2020 ◽  
Vol 38 (4) ◽  
pp. 355-362
Author(s):  
Yosuke OGINO ◽  
Masahiro IIDA ◽  
Satoru ASAI ◽  
Shohei KOZUKI ◽  
Naoya HAYAKAWA ◽  
...  

Author(s):  
Sachin Mohal ◽  
Saurabh Chaitanya ◽  
Manjit Singh ◽  
Rachin Goyal ◽  
Amresh Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document