Influence of Thermal Simulated and Real Tandem Submerged Arc Welding Process on the Microstructure and Mechanical Properties of the Coarse Grained Heat Affected Zone

2011 ◽  
Vol 110-116 ◽  
pp. 3191-3198
Author(s):  
Sadegh Moeinifar

The high-strength low-alloy microalloyed steel was procured as a hot rolled plate with accelerated cooling. The Gleeble thermal simulated process involved heating the steel specimens to the peak temperature of 1400 °C, with constant cooling rates of 3.75 °C/s and 2 °C/s to room temperature. The four-wire tandem submerged arc welding process, with different heat input, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat affected zone regions. The martensite/austenite constituents were obtained by a combination of field emission scanning electron microscopes and image analysis software The Charpy absorbed energy of specimens was assessed using Charpy impact testing at-50 °C. Brittle particles, such as martensite/austenite constituent along the grain boundaries, can make an easy path for crack propagation. Similar crack initiation sites and growth mechanism were investigated for specimens welded with different heat input values.

2011 ◽  
Vol 284-286 ◽  
pp. 2469-2472
Author(s):  
Aniruddha Ghosh ◽  
Somnath Chattopadhyaya ◽  
S. Mukherjee

In Submerged Arc Welding process involves critical set of variables which are needed to control. An attempt has been made in this paper to find out- the influence of the heat input and bead volume on HAZ Hardness for Submerged Arc Welding Process of Mild steel plates. Mild steel plates are welded by changing input variables (current, voltage, travel speed, i.e. heat input) and Rockwell hardness no. has been observed on welded portion and at the zone adjacent to the welded portion. A detailed analysis of the microstructure changes is carried out to understand the HAZ softening phenomenon.


Sign in / Sign up

Export Citation Format

Share Document