scholarly journals CO2 Miscible Flooding for Enhanced Oil Recovery

Author(s):  
Abdelaziz Nasr El-hoshoudy ◽  
Saad Desouky
2012 ◽  
Vol 9 (2) ◽  
pp. 192-198 ◽  
Author(s):  
Binshan Ju ◽  
Yu-Shu Wu ◽  
Jishun Qin ◽  
Tailiang Fan ◽  
Zhiping Li

2022 ◽  
pp. 122-129
Author(s):  
Nesi Syafitri ◽  
Yudhi Arta

The petroleum industry is developing technology to increase oil recovery in reservoirs. One of the technologies used is Enhanced Oil Recovery (EOR). Selecting an EOR method for a specific reservoir condition is one of the most challenging tasks for a reservoir engineer. This study tries to build a fuzzy logic-based screening system to determine the EOR method. It created the system intending to be able to assist in selecting and determining the appropriate EOR method used in the field. There are nine input criteria used to screen the EOR criteria, namely: API Gravity, Oil Saturation, Formation Type, Net Thickness, Viscosity, Permeability, Temperature, Porosity, Depth criteria. The output criteria generated from the calculation of the EOR screening criteria are 14 outputs, namely: CO2 MF Miscible Flooding, CO2 IMMF Immiscible Flooding, HC MF Miscible Flooding, HC IMMF Immiscible Flooding, N2 MF Miscible Flooding, N2 IMMF Immiscible Flooding, WAG MF Miscible Flooding , HC+WAG IMMF Immiscible Flooding, Polymer, ASP, Combustion, Steam, Hot Water, Microbial. In this system, 512 rules are generated to produce 14 different outputs of the EOR method, with Mamdani's Fuzzy Inference reasoning. This fuzzy-based screening system has an accuracy rate of 80.95%, so this system is suitable to be used to assist reservoir engineers in determining the appropriate EOR method to be used according to the conditions in the reservoir. The sensitivity level of the system only reaches 53.1%, while the specificity level reaches 94%.


Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document