scholarly journals Fuzzy-Based Screening System for Determination of Enhanced Oil Recovery (EOR) Method in Reservoir

2022 ◽  
pp. 122-129
Author(s):  
Nesi Syafitri ◽  
Yudhi Arta

The petroleum industry is developing technology to increase oil recovery in reservoirs. One of the technologies used is Enhanced Oil Recovery (EOR). Selecting an EOR method for a specific reservoir condition is one of the most challenging tasks for a reservoir engineer. This study tries to build a fuzzy logic-based screening system to determine the EOR method. It created the system intending to be able to assist in selecting and determining the appropriate EOR method used in the field. There are nine input criteria used to screen the EOR criteria, namely: API Gravity, Oil Saturation, Formation Type, Net Thickness, Viscosity, Permeability, Temperature, Porosity, Depth criteria. The output criteria generated from the calculation of the EOR screening criteria are 14 outputs, namely: CO2 MF Miscible Flooding, CO2 IMMF Immiscible Flooding, HC MF Miscible Flooding, HC IMMF Immiscible Flooding, N2 MF Miscible Flooding, N2 IMMF Immiscible Flooding, WAG MF Miscible Flooding , HC+WAG IMMF Immiscible Flooding, Polymer, ASP, Combustion, Steam, Hot Water, Microbial. In this system, 512 rules are generated to produce 14 different outputs of the EOR method, with Mamdani's Fuzzy Inference reasoning. This fuzzy-based screening system has an accuracy rate of 80.95%, so this system is suitable to be used to assist reservoir engineers in determining the appropriate EOR method to be used according to the conditions in the reservoir. The sensitivity level of the system only reaches 53.1%, while the specificity level reaches 94%.

2014 ◽  
Author(s):  
C. L. Delgadillo-Aya ◽  
M.L.. L. Trujillo-Portillo ◽  
J.M.. M. Palma-Bustamante ◽  
E.. Niz-Velasquez ◽  
C. L. Rodríguez ◽  
...  

Abstract Software tools are becoming an important ally in making decisions on the development or implementation of an enhanced oil recovery processes from the technical, financial or risk point of view. This work, can be manually developed in some cases, but becomes more efficient and precise with the help of these tools. In Ecopetrol was developed a tool to make technical and economic evaluation of enhanced oil recovery processes such as air injection, both cyclic and continuous steam injection, and steam assisted gravity drainage (SAGD) and hot water injection. This evaluation is performed using different types of analysis as binary screening, analogies, benchmarking, and prediction using analytical models and financial and risk analysis. All these evaluations are supported by a comprehensive review that has allowed initially find favorable conditions for different recovery methods evaluated, and get a probability of success based on this review. Subsequently, according to the method can be used different prediction methods, given an idea of the process behavior for a given period. Based on the prediction results, it is possible to feed the software to generate a financial assessment process, in line with cash flow previously developed that incorporates all the elements to be considered during the implementation of a project. This allows for greater support to the choice or not the application of a method. Finally the tool to evaluate the levels of risks that outlines the development of the project based on the existing internal methodology in the company, identifying the main and level of criticality and define actions for prevention, mitigation and risk elimination.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imran Akbar ◽  
Hongtao Zhou ◽  
Wei Liu ◽  
Muhammad Usman Tahir ◽  
Asadullah Memon ◽  
...  

In the petroleum industry, the researchers have developed a new technique called enhanced oil recovery to recover the remaining oil in reservoirs. Some reservoirs are very complex and require advanced enhanced oil recovery (EOR) techniques containing new materials and additives in order to produce maximum oil in economic and environmental friendly manners. In this work, the effects of nanosuspensions (KY-200) and polymer gel HPAM (854) on oil recovery and water cut were studied in the view of EOR techniques and their results were compared. The mechanism of nanosuspensions transportation through the sand pack was also discussed. The adopted methodology involved the preparation of gel, viscosity test, and core flooding experiments. The optimum concentration of nanosuspensions after viscosity tests was used for displacement experiments and 3 wt % concentration of nanosuspensions amplified the oil recovery. In addition, high concentration leads to more agglomeration; thus, high core plugging takes place and diverts the fluid flow towards unswept zones to push more oil to produce and decrease the water cut. Experimental results indicate that nanosuspensions have the ability to plug the thief zones of water channeling and can divert the fluid flow towards unswept zones to recover the remaining oil from the reservoir excessively rather than the normal polymer gel flooding. The injection pressure was observed higher during nanosuspension injection than polymer gel injection. The oil recovery was achieved by about 41.04% from nanosuspensions, that is, 14.09% higher than polymer gel. Further investigations are required in the field of nanoparticles applications in enhanced oil recovery to meet the world's energy demands.


Author(s):  
Temitope Ogunkunle ◽  
Adesina Fadairo ◽  
Vamegh Rasouli ◽  
Kegang Ling ◽  
Adebowale Oladepo ◽  
...  

AbstractThe limitation in the formulation and application of synthetic surfactants in petroleum industry is owing to their high cost of production or importation and their associated toxic effect which have been proven to be harmful to the environment. Hence it is vitally imperative to develop an optimum surfactant that is cost-effective, environmentally safe (biodegradable) and equally serves as surface acting agent. This study discusses the production of microbial produced bio-surfactant and its application in enhanced oil recovery. The bacteria Pseudomonas sp. were isolated from urine and allow to feed on neem seed oil as the major carbon source and energy. The crude bio-surfactant produced from the fermentation process was used to prepare three (3) solutions of bio-surfactants at different concentrations of 5 g/500 mL, 10 g/500 mL and 15 g/500 mL, and their suitability for enhanced oil recovery (EOR) was evaluated. Reservoir core samples and crude oil collected from the Niger Delta field were used to evaluate the EOR application of the microbial-derived surfactants. The sets of experimental samples were carried out using core flooding and permeability tester equipment, and the results obtained were compared with conventional waterflooding experiments. The three bio-surfactant concentrations were observed to recover more oil than the conventional waterflooding method for the two core samples used. Optimum performance of the produced microbial-derived surfactant on oil recovery based on the concentrations was observed to be 10 g/500 mL for the two samples used in this study. Therefore, eco-friendly bio-surfactant produced from neem seed oil using Pseudomonas sp. has shown to be a promising potential substance for enhanced oil recovery applications by incremental recoveries of 51.9%, 53.2%, and 29.5% at the concentration of 5, 10, and 15 g/500 mL and 24.7%, 28.7%, and 20.1% at concentration of 5, 10, and 15 g/500 mL for the two core samples, respectively.


2020 ◽  
Vol 10 (8) ◽  
pp. 3947-3959
Author(s):  
Kyle Medica ◽  
Rean Maharaj ◽  
David Alexander ◽  
Mohammad Soroush

Abstract Trinidad and Tobago (TT) is seeking to develop more economical methods of enhanced oil recovery to arrest the decline in crude oil production and to meet the current and future energy demand. The utilization of alkaline-polymer flooding to enhance oil recovery in TT requires key studies to be conducted to obtain critical information of the flooding system (soil type, additive type, pH, adsorption characteristics and rheological (flow) characteristics). Understanding the role of, interplay and optimizing of these variables will provide key input data for the required simulations to produce near realistic projections of the required EOR efficiencies. The parameters of various wells in TT were compared to the screening criteria for alkali-polymer flooding, and the EOR 4 well was found to be suitable and thus selected for evaluation. Laboratory adsorption studies showed that the 1000 ppm xanthan gum flooding solution containing 0.25% NaOH exhibited the lowest absorption capacity for the gravel packed sand and exhibited the lowest viscosity at all the tested shear rates. The lowest adsorption was 2.27 × 10−7 lbmole/ft3 which occurred with the 1000 ppm xanthan gum polymer containing 0.25% NaOH, and the evidence showed that the polymer was adsorbed on the other side of the faults, indicating that it has moved further and closer to the producing well. Implementation of an alkali polymer flooding resulted in an incremental increase in the recovery factors (~ 3%) compared to polymer flooding; however, a change in the oil recovery as a function of the alkaline concentration was not observed. The simulated economic analysis clearly shows that all the analysed EOR scenarios resulted in economically feasible outcomes of net present value (NPV), Internal Rate of Return (IRR) and payback period for oil price variations between $35 and $60 USD per barrel of oil. A comparison of the individual strategies shows that the alkali-polymer flood system utilizing 0.25% sodium hydroxide with 1000 ppm xanthan gum is the best option in terms of cumulative production, recovery factor, NPV, IRR and time to payback.


2000 ◽  
Vol 19 (2) ◽  
pp. 161-174 ◽  
Author(s):  
William Berry

Robert M. Kleinpell (1905-1986) brought new concepts into oil exploration in California in the late 1920s that enhanced oil recovery. He used basic biostratigraphic principles developed by Albert Oppel (1831-1865) in a study of the ammonite-bearing Jurassic successions in Europe to solve a challenge that faced California's petroleum industry in the 1920s. That challenge was how to recognize a specific stratigraphic position in a sequence of unseen and seemingly unfossiliferous, homogenous California Tertiary strata being perforated by oil-well drilling equipment and how to identify oil-bearing strata from well to well. Kleinpell's insightful use of relevant biostratigraphic principles led to recovery of many millions of barrels of petroleum from California's Tertiary stratigraphic succession. Despite considerable economic success, rarely have geologists outside California's petroleum industry recognized the significance of Kleinpell's economically rewarding application of scientific principle. Furthermore, rarely have American geologists noted the similarity between biostratigraphic practice of most Europeans and that of Kleinpell.


2017 ◽  
Vol 1 (2) ◽  
pp. 54 ◽  
Author(s):  
Soheil Bahrekazemi ◽  
Mahnaz Hekmatzadeh

Assessment of the suitable enhanced oil recovery method in an oilfield is one of the decisions which are made prior to the natural drive production mechanism. In some cases, having in-depth knowledge about reservoir’s rock, fluid properties, and equipment is needed as well as economic evaluation. Both putting such data into simulation and its related consequent processes are generally very time consuming and costly.  In order to reduce study cases, an appropriate tool is required for primary screening prior to any operations being performed, to which leads reduction of time in design of ether pilot section or production under field condition. In this research, two different and useful screening tools are presented through a graphical user interface. The output of just over 900 simulations and verified screening criteria tables were employed to design the mentioned tools. Moreover, by means of gathered data and development of artificial neural networks, two dissimilar screening tools for proper assessment of suitable enhanced oil recovery method were finally introduced. The first tool is about the screening of enhanced oil recovery process based on published tables/charts and the second one which is Neuro-Simulation tool, concerns economical evaluation of miscible and immiscible injection of carbon dioxide, nitrogen and natural gas into the reservoir. Both of designed tools are provided in the form of a graphical user interface by which the user, can perceive suitable method through plot of oil recovery graph during 20 years of production, costs of gas injection per produced barrel, cumulative oil production, and finally, design the most efficient scenario.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Chen Sun ◽  
Hu Guo ◽  
Yiqiang Li ◽  
Kaoping Song

Recently, there are increasing interests in chemical enhanced oil recovery (EOR) especially surfactant-polymer (SP) flooding. Although alkali-surfactant-polymer (ASP) flooding can make an incremental oil recovery factor (IORF) of 18% original oil in place (OOIP) according to large-scale field tests in Daqing, the complex antiscaling and emulsion breaking technology as well as potential environment influence makes some people turn to alkali-free SP flooding. With the benefit of high IORF in laboratory and no scaling issue to worry, SP flooding is theoretically better than ASP flooding when high quality surfactant is available. Many SP flooding field tests have been conducted in China, where the largest chemical flooding application is reported. 10 typical large-scale SP flooding field tests were critically reviewed to help understand the benefit and challenge of SP flooding in low oil price era. Among these 10 field tests, only one is conducted in Daqing Oilfield, although ASP flooding has entered the commercial application stage since 2014. 2 SP tests are conducted in Shengli Oilfield. Both technical and economic parameters are used to evaluate these tests. 2 of these ten tests are very successful; the others were either technically or economically unsuccessful. Although laboratory tests showed that SP flooding can attain IORF of more than 15%, the average predicted IORF for these 10 field tests was 12% OOIP. Only two SP flooding tests in (SP 1 in Liaohe and SP 7 in Shengli) were reported actual IORF higher than 15% OOIP. The field test in Shengli was so successful that many enlarged field tests and industrial applications were carried out, which finally lead to a commercial application of SP flooding in 2008. However, other SP projects are not documented except two (SP7 and SP8). SP flooding tests in low permeability reservoirs were not successful due to high surfactant adsorption. It seems that SP flooding is not cost competitive as polymer flooding and ASP flooding if judged by utility factor (UF) and EOR cost. Even the most technically and economically successful SP1 has a much higher cost than polymer flooding and ASP flooding, SP flooding is thus not cost competitive as previously expected. The cost of SP flooding can be as high as ASP flooding, which indicates the importance of alkali. How to reduce surfactant adsorption in SP flooding is very important to cost reduction. It is high time to reevaluate the potential and suitable reservoir conditions for SP flooding. The necessity of surfactant to get ultra-low interfacial tension for EOR remains further investigation. This paper provides the petroleum industry with hard-to-get valuable information.


Sign in / Sign up

Export Citation Format

Share Document