scholarly journals Accelerated Cavitation Damage of Steels in Liquid Metal Environments

Author(s):  
Shengqiang Ma ◽  
Jiandong Xing ◽  
Hanguang Fu ◽  
Shizhong Wei
Author(s):  
Mark Wendel ◽  
David Felde ◽  
Thomas Karnowski ◽  
Bernard Riemer ◽  
Arthur Ruggles

One option that shows promise for protecting solid surfaces from cavitation damage in liquid metal spallation targets involves introducing an interstitial gas layer between the liquid metal and the containment vessel wall. Several approaches toward establishing such a protective gas layer are being investigated at the Oak Ridge National Laboratory including large bubble injection and methods that involve stabilization of the layer by surface modifications to enhance gas hold-up on the wall or by inserting a porous media. It has previously been reported that using a gas layer configuration in a test target showed an order-of-magnitude decrease in damage for an in-beam experiment. Video images that were taken of the successful gas/mercury flow configuration have been analyzed and correlated. The results show that the success was obtained under conditions where only 60% of the solid wall was covered with gas. Such a result implies that this mitigation scheme may have much more potential. Additional experiments with gas injection into water are underway. Multi-component flow simulations are also being used to provide direction for these new experiments. These simulations have been used to size the gas layer and position multiple inlet nozzles.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 681
Author(s):  
Tao Wan ◽  
Takashi Naoe ◽  
Hiroyuki Kogawa ◽  
Masatoshi Futakawa ◽  
Hironari Obayashi ◽  
...  

To perform basic Research and Development for future Accelerator-driven Systems (ADSs), Japan Proton Accelerator Research Complex (J-PARC) will construct an ADS target test facility. A Lead–Bismuth Eutectic (LBE) spallation target will be installed in the target test facility and bombarded by pulsed proton beams (250 kW, 400 MeV, 25 Hz, and 0.5 ms pulse duration). To realize the LBE spallation target, cavitation damage due to pressure changes in the liquid metal should be determined, preliminarily, because such damage is considered to be very critical, from the viewpoint of target safety and lifetime. In this study, cavitation damage due to pressure waves caused by pulsed proton beam injection and turbulent liquid metal flow, were studied, numerically, from the viewpoint of single cavitation bubble dynamics. Specifically, the threshold of cavitation and effects of flow speed fluctuation on cavitation bubble dynamics, in an orifice structure, were investigated in the present work. The results showed that the LBE spallation target did not undergo cavitation damage, under normal nominal operation conditions, mainly because of the long pulse duration of the pulsed proton beam and the low liquid metal flow velocity. Nevertheless, the possibility of cavitation damage in the orifice structure, under certain extreme transient LBE flow conditions, cannot be neglected.


1993 ◽  
Vol 3 (8) ◽  
pp. 1201-1225 ◽  
Author(s):  
G. N�ron de Surgy ◽  
J.-P. Chabrerie ◽  
O. Denoux ◽  
J.-E. Wesfreid

1984 ◽  
Vol 45 (C9) ◽  
pp. C9-179-C9-182
Author(s):  
G. L.R. Mair ◽  
T. Mulvey ◽  
R. G. Forbes

1989 ◽  
Vol 50 (C8) ◽  
pp. C8-175-C8-177 ◽  
Author(s):  
N. M. MISKOVSKY ◽  
J. HE ◽  
P. H. CUTLER ◽  
M. CHUNG
Keyword(s):  

1983 ◽  
Vol 140 (5) ◽  
pp. 137 ◽  
Author(s):  
M.D. Gabovich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document