scholarly journals Do We Manipulate Photons or Diffractive EM Waves to Generate Structured Light?

Author(s):  
ChandraSekhar Roychoudhuri

In the domain of light emissions, quantum mechanics has been an immensely successful guiding tool for us. In the propagation of light and optical instrument design, Huygens-Fresnel diffraction integral (HFDI) (or its advanced versions) and Maxwell’s wave equation are continuing to be the essential guiding tools for optical scientists and engineers. In fact, most branches of optical science and engineering, like optical instrument design, image processing, Fourier optics, Holography, etc., cannot exist without using the foundational postulates behind the Huygens-Fresnel diffraction integral. Further, the field of structured light is also growing where phases and the state of polarizations are manipulated usually with suitable classical macro-devices to create wave fronts that restructured through light-matter interactions through these devices. Mathematical modeling of generating such complex wave fronts generally follows classical concepts and classical macro tools of physical optics. Some of these complex light beams can impart mechanical angular momentum and spin-like properties to material particles inserted inside these structured beams because of their electromagnetic dipolar properties and/or structural anisotropy. Does that mean these newly structured beams have acquired new quantum properties without being generated through quantum devices and quantum transitions? In this chapter, we bridge the classical and quantum formalism by defining a hybrid photon (HP). HP is a quantum of energy, hν, at the initial moment of emission. It then immediately evolves into a classical time-finite wave packet, still transporting the original energy, hν, with a classical carrier frequency ν (oscillation of the E-vector). This chapter will raise enquiring questions whether all these observed “quantum-like” behaviors are manifestations of the joint properties of interacting material particles with classical EM waves or are causal implications of the existence of propagation of “indivisible light quanta” with exotic properties like spin, angular momentum, etc.

1993 ◽  
Vol 71 (1-2) ◽  
pp. 70-78 ◽  
Author(s):  
Marc Couture ◽  
Michel Piché

The focusing properties of a so-called reflaxicon (a combination of a diverging and a converging axicon) are studied both theoretically and experimentally. Calculations of intensity distributions produced by this system are made by evaluating the Kirchhoff–Fresnel diffraction integral, first by means of an approximate technique, the stationary phase method, then by a more exact numerical method. The calculations are presented for various planes along the axis of the axicons. The effects of the presence of the supporting mount of the axicons and of some important misalignments of the system on the distributions is also investigated. Experimental results of actual intensity distributions produced by focusing a near-fundamental Gaussian beam by such a system are also presented and are seen to be in fair agreement with numerical calculations. Such calculations would be valuable in many applications for predicting important characteristics (e.g., peak intensity, length of the focal line, degree of asymmetry) of the intensity distributions formed by optical systems containing an axicon pair as the focusing component.


2018 ◽  
Vol 98 (4) ◽  
Author(s):  
Ahmed H. Dorrah ◽  
Carmelo Rosales-Guzmán ◽  
Andrew Forbes ◽  
Mo Mojahedi

2000 ◽  
Vol 9 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Yang Jun ◽  
Fan Dian-yuan ◽  
Wang Shi-ji ◽  
Gu Yuan

Optica ◽  
2017 ◽  
Vol 4 (11) ◽  
pp. 1350 ◽  
Author(s):  
Alessio D’Errico ◽  
Raffaele D’Amelio ◽  
Bruno Piccirillo ◽  
Filippo Cardano ◽  
Lorenzo Marrucci

Sign in / Sign up

Export Citation Format

Share Document