scholarly journals AN EARLY PERMIAN GARNET-BEATING PERALUMINOUS GRANITIC PLUTON IN THE SOUTH TIANSHAN OROGENIC BELT, NW CHINA: PETROLOGICAL, MINERALOGICAL AND GEOCHEMICAL CONSTRAINTS

2017 ◽  
Vol 8 (3) ◽  
pp. 537-538
Author(s):  
Qie Qin ◽  
He Huang ◽  
Tao Wang ◽  
Zhaochong Zhang
2018 ◽  
Vol 53 ◽  
pp. 16-29 ◽  
Author(s):  
Gaoxue Yang ◽  
Yongjun Li ◽  
Sanzhong Li ◽  
Lili Tong ◽  
Zuopeng Wang ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 348
Author(s):  
Minxin You ◽  
Wenyuan Li ◽  
Houmin Li ◽  
Zhaowei Zhang ◽  
Xin Li

The Baixintan mafic-ultramafic intrusion in the Dananhu-Tousuquan arc of the Eastern Tianshan orogenic belt is composed of lherzolite, olivine gabbro, and gabbro. Olivine gabbros contain zircon grains with a U-Pb age of 276.8 ± 1.1 Ma, similar to the ages of other Early Permian Ni-Cu ore-bearing intrusions in the region. The alkaline-silica diagrams, AFM diagram, together with the Ni/Cu-Pd/Ir diagram, indicate that the parental magmas for the Baixintan intrusion were likely high-Mg tholeiitic basaltic in composition. The Cu/Pd ratios, the relatively depleted PGEs and the correlations between them demonstrate that the parental magmas had already experienced sulfide segregation. The lower CaO content in pyroxenites compared with the Duke Island Alaskan-type intrusion and the composition of spinels imply that Baixintan is not an Alaskan-type intrusion. By comparing the Baixintan intrusion with other specific mafic-ultramafic intrusions, this paper considers that the mantle source of the Baixintan intrusion is metasomatized by subduction slab-derived fluids’ components, which gives rise to the negative anomalies of Nb, Ti, and Ta elements. Nb/Yb-Th/Yb, Nb/Yb-TiO2/Yb, and ThN-NbN plots show that the Baixintan intrusion was emplaced in a back-arc spreading environment and may be related to a mantle plume.


2021 ◽  
Author(s):  
Yigui Han ◽  
Guochun Zhao

<p>The South Tianshan Orogenic Belt in NW China marks the suturing site between the Tarim Craton and the Central Asian Orogenic Belt (CAOB) during late Paleozoic-Mesozoic time. Despite numerous investigations, the amalgamation history along the South Tianshan Orogen remains controversial, especially on the timing and process of the final continental collision between the Tarim Craton and the Central Tianshan (CTS)-Yili Block. We inquire into this issue on the basis of a compiled dataset across the Tarim, South Tianshan and CTS-Yili regions, comprising elemental and isotopic data of magmatic rocks and radiometric ages of regional magmatism, detrital zircons, (ultra-)high pressure metamorphism and tectonothermal events. The data support a continental collision along the South Tianshan belt in 310-300 Ma, in accord with a contemporaneous magmatic quiescence and a prominent decrease of εNd(t) and εHf(t) values of magmatic rocks in the CTS region, and a main exhumation stage of (U)HP rocks in the South Tianshan region. The collisional orogeny along the South Tianshan have most likely been influenced by a mantle plume initiated at ca. 300 Ma underneath the northern Tarim Craton, as evidenced by temporal and spatial variations of geochemical proxies tracing magma source characteristics. The new model of plume-modified collision orogeny reconciles the absence of continental-type (U)HP rocks in the orogen and the insignificant upper-plate uplift during continental collision. In the mid-Triassic (ca. 240 Ma), the Chinese western Tianshan underwent intense surface uplift and denudation, as indicated by sedimentary provenance analysis and tectonothermal events. Paleocurrent and detrital zircon age data from Triassic strata in northern Tarim suggest a provenance change from a single source of the Tarim Craton to multiple sources including the CTS-Yili Block to the north and the Western Kunlun Orogen to the south. We suggest that the mid-Triassic uplifting in Chinese western Tianshan was an intracontinental orogeny caused by far-field effects of the collision between the Tarim Craton and the Qiangtang Block. This research was financially supported by NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).</p>


2014 ◽  
Vol 1010-1012 ◽  
pp. 1404-1407
Author(s):  
Hui Mei Guan ◽  
Hai Yan Cheng ◽  
Yan Li Kang

The Tianshan Orogenic Belt, which is located in the southwestern part of the Central Asian Orogenic Belt (CAOB), is an important component in the reconstruction of the tectonic evolution of the CAOB. In order to examine the evolution of the Tianshan Orogenic Belt, we performed macroscopic, microscopic structure observations analyses with deformed rocks along orogen-perpendicular transects pass Wuwamen in the South Tianshan orogenic belt of south west China, and we propose that the South Tianshan Orogenic belt enterwent a high temperature deformation in Wuwamen area during the plate interactions in Late Paleozoic.


2017 ◽  
Vol 130 (5-6) ◽  
pp. 952-974 ◽  
Author(s):  
Hu Huang ◽  
Peter A. Cawood ◽  
Shijun Ni ◽  
Mingcai Hou ◽  
Zhiqiang Shi ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Gang Xu ◽  
Jun Duan ◽  
Wenbin Gao ◽  
Rongmin Wang ◽  
Zhen Shi ◽  
...  

Extensive Early Permian mafic-ultramafic intrusions, doleritic dykes, and basalts crop out within the Beishan area, southern Central Asian Orogenic Belt (CAOB). We present new geochronological and geochemical data for Gubaoquan dolerite dyke swarms in the Beishan orogenic belt. Zircon U-Pb Dating of the Gubaoquan dykes indicates that they were emplaced during the Early Permian (280.7 ± 4 Ma), that was coeval with Yinaoxia and Podong mafic dykes in Beishan area. The dykes are characterized by low Mg# (47–84) in the clinopyroxene crystals, and the content of whole-rock Fe2O3 (t), MgO, and alkali (Na2O + K2O) range from 12.5–17.4, 4.06–5.51, and 2.8–4.4 wt.%, respectively. The samples from the Gubaoquan dykes have high and variable Ba/La (5.93–14.2) and Ba/Nb (15.0–37.3) ratios but low Th/Yb (0.17–0.24) ratios. The rocks show slightly enrichments in LREE, HFSE, Th, and Hf, and depletion in Nb and Ta. The εNd (t = 280 Ma) values and initial 87Sr/86Sr ratios of the Gubaoquan dykes show variations ranging from 6.4 to 6.8 and 0.706240 to 0.707546, respectively. These data suggest that the parental magmas for the Gubaoquan dykes were probably derived from partially decompressed melting of upwelling depleted asthenosphere mantle that was metasomatized previously by subducted fluids.


Sign in / Sign up

Export Citation Format

Share Document