ultramafic intrusion
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 28)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
pp. 104644
Author(s):  
Jian Kang ◽  
Lie-Meng Chen ◽  
Song-Yue Yu ◽  
Wen-Qin Zheng ◽  
Zhi-Hui Dai ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1321
Author(s):  
Lihui Jia ◽  
Qian Mao ◽  
Bin Su ◽  
Shitou Wu ◽  
Liangliang Huang ◽  
...  

Orthopyroxene, an important phase in mantle-derived rocks, has become a powerful tool to unravel mantle nature and magma processes. However, the applications have been hindered by the lag in the development of analytical techniques, such as shortage of reference materials. Orthopyroxene grains derived from an ultramafic intrusion at the Mogok metamorphic belt (Myanmar) were evaluated for the potential use of orthopyroxene as a reference material for in-situ microanalysis. Approximately 20 g of 0.5–3 mm pure orthopyroxene grains were separated under binocular microscope and analyzed using EPMA, LA-ICPMS, and bulk analytical methods (XRD, XRF, and solution-ICPMS) for major and trace elements at four institutions. Eleven core-to-rim profiles carried out using EPMA and twelve core-to-rim profiles determined using LA-ICPMS suggest that MK-1 orthopyroxene grains are sufficiently homogeneous, with RSD < ±2% (1σ) for major elements (Mg, Si, and Fe) and RSD < ±10% (1σ) for trace elements (Na, Al, Ca, Ti, Cr, Co, Zn, Ni, Mn, Sc, and V). In addition, the composition of MK-1 orthopyroxene was also measured by XRF and solution-ICPMS measurements in two different laboratories, to compare with the results measured using EPMA and LA-ICPMS. The results indicated a good agreement with RSE < ±2% (1σ) for major elements and RSE < ±5% (1σ) for most trace elements, except for Na (±9.73%) and Ti (±6.80%). In an overall assessment of these data, MK-1 orthopyroxene can be considered as a reference material for in-situ microanalysis, which would provide solid trace elements data for a better understanding of mantle source and magmatic evolution.


Author(s):  
Grant Lowey

Waldien et al. (2021) present new bedrock geologic mapping, U-Pb geochronology, and 40Ar/39Ar thermochronology from the eastern Alaska Range in south-central Alaska to determine the burial and exhumation history of metamorphic rocks associated with the Alaska Range suture zone, interpret the history of faults responsible for the burial and exhumation of the metamorphic rocks, and speculate on the relative importance of the Alaska Range suture zone and related structures during Cenozoic reactivation. They also propose that ultramafic rocks in their Ann Creek map area in south-central Alaska (herein referred to as the “Ann Creek ultramafic complex”) correlate with the Pyroxenite Creek ultramafic complex in southwestern Yukon, and that this correlation is “consistent with other estimates of &gt;400 km” of offset on the Denali fault. However, despite Waldien et al.’s (2021) claim that the purportedly offset ultramafic rocks are “similar” and that characteristics of the Ann Creek ultramafic complex “make a strong case” for a faulted portion of an Alaska-type ultramafic intrusion, their paper gives short shrift in describing the Pyroxenite Creek ultramafic complex and in discussing previous estimates of displacement on the Denali fault. In Addition, Waldien et al. (2021) are either unaware of or ignore several key references of the Pyroxenite Creek ultramafic complex and estimates of displacement on the Denali fault. As a result, Waldien et al.’s (2021) claim of a “correlation” between allegedly offset ultramafic rocks is suspect, and their reference to “other estimates of &gt;400 km” of offset on the Denali fault is incorrect, or at the very least misleading.


2021 ◽  
Vol 59 (4) ◽  
pp. 631-665
Author(s):  
Franck Gouedji ◽  
Christian Picard ◽  
Marc Antoine Audet ◽  
Thierry Augé ◽  
Jorge Spangenberg

ABSTRACT The mafic-ultramafic Samapleu deposits of the Yacouba complex, which host nickel, copper sulfides, and platinum-group minerals, are located in the Biankouma-Silipou region, western Ivory Coast. These intrusions originate from the mantle and would have been established during the Proterozoic (2.09 Ga) around 22 km deep within the Archean granulites (3.6–2.7 Ga) which at least partially contaminated them. Platinum-group and sulfide minerals from the Samapleu deposits were studied using optical microscopy, scanning electron microscopy, the electronic microprobe, X-ray fluorescence, fire assay, and a Thermo Fisher Scientific Delta S isotope ratio mass spectrometer system. The sulfide mineralization (mainly pyrrhotite, pentlandite, chalcopyrite ± pyrite) is mainly disseminated with, in places, semi-massive to massive sulfide veins. It is especially abundant in pyroxenite horizons with net or breccia textures. The isotopic ratios of sulfur measured from the sulfides (an average of 0.1‰), the R factor (between 1500 and 10,000), and the Cu/Pd ratios indicate a mantle source. Thus, the sulfides would have formed from sulfide liquids produced by immiscibility from the silicate mantle magma under mafic-ultramafic intrusion emplacement conditions and with possible geochemical modification of the magmas by assimilation of the surrounding continental crust. The platinum-group minerals (michenerite, merenskyite, moncheite, Co-rich gersdorffite, irarsite, and hollingworthite) are mainly associated with the sulfide phases. The nature of the platinum-group minerals is indicative of the probable role of late-magmatic hydrothermal fluids during the mineralizing process.


Author(s):  
Qi-Wei Li ◽  
Jun-Hong Zhao ◽  
Mei-Fu Zhou ◽  
Jian-Feng Gao

The magmatic processes beneath the active continental margins are very complicated and affect structures and compositions of the arc roots. Neoproterozoic igneous rocks are widely distributed around the margins of the Tarim Block in NW China. The Xingdier mafic-ultramafic intrusion is a composite body, located at the northern margin of the Tarim Block, and consists of gabbro, pyroxenite, and peridotite units. The gabbro unit has a secondary ion mass spectrometry zircon U-Pb age of 727 ± 5 Ma. Rocks from the Xingdier intrusion have a large range of MgO (12.9−32.8 wt%) and SiO2 (43.0−57.9 wt%), and low K2O+Na2O (0.11−2.25 wt%) contents. They have right inclined chondrite-normalized rare earth element patterns with (La/Yb)N ratios of 2.2−8.6. Their primitive mantle normalized trace element patterns show arc-affinity geochemical features characterized by enrichment in Rb, Ba, Th, U, and Pb and depletion in Nb, Ta, and Ti. They have variable initial 87Sr/86Sr ratios (0.7063−0.7093), εNd(t) values (−2.9 to −7.8), 206Pb/204Pb (17.08−17.80), 207Pb/204Pb (15.42−15.49), and 208Pb/204Pb ratios (37.48−38.05), forming an evolution trend from the peridotite unit to the gabbro and pyroxenite units. Clinopyroxene in the three units is chemically similar to those formed in hydrous magmas. The spinel inclusions in olivine from the peridotite unit show unmixing texture and have high Al contents and oxygen fugacity of ∼FMQ+1. Therefore, the parental magma was probably derived from a lithospheric mantle enriched by slab-derived fluids. Rocks from the gabbro and peridotite units are proposed to have been derived from olivine-normative melts, whereas rocks from the pyroxenite unit are cumulates from the quartz-normative melts. Such contrasting parental magmas resulted from variable degrees of crustal contamination and fractional crystallization in the arc root.


2021 ◽  
Author(s):  
Qiwei Li ◽  
Jun-Hong Zhao ◽  
et al.

Table S1: Electron microprobe analyses of spinel; Table S2: Electron microprobe analyses of olivine; Table S3: Electron microprobe analyses of clinopyroxene; Table S4: Electron microprobe analyses of orthopyroxene; Table S5: Electron microprobe analyses of plagioclase; Table S6: Electron microprobe analyses of amphibole; Table S7: EC-AFC modeling results for the contamination of average lower crust.


2021 ◽  
Author(s):  
Qiwei Li ◽  
Jun-Hong Zhao ◽  
et al.

Table S1: Electron microprobe analyses of spinel; Table S2: Electron microprobe analyses of olivine; Table S3: Electron microprobe analyses of clinopyroxene; Table S4: Electron microprobe analyses of orthopyroxene; Table S5: Electron microprobe analyses of plagioclase; Table S6: Electron microprobe analyses of amphibole; Table S7: EC-AFC modeling results for the contamination of average lower crust.


Sign in / Sign up

Export Citation Format

Share Document