scholarly journals Liouville measure as a multiplicative cascade via level sets of the Gaussian free field

2020 ◽  
Vol 70 (1) ◽  
pp. 205-245
Author(s):  
Juhan Aru ◽  
Ellen Powell ◽  
Avelio Sepúlveda
2019 ◽  
Vol 177 (1-2) ◽  
pp. 525-575
Author(s):  
Alberto Chiarini ◽  
Maximilian Nitzschner

Author(s):  
Alexander Drewitz ◽  
Alexis Prévost ◽  
Pierre-François Rodriguez

AbstractWe investigate level sets of the Gaussian free field on continuous transient metric graphs $$\widetilde{{\mathcal {G}}}$$ G ~ and study the capacity of its level set clusters. We prove, without any further assumption on the base graph $${\mathcal {G}}$$ G , that the capacity of sign clusters on $$\widetilde{{\mathcal {G}}}$$ G ~ is finite almost surely. This leads to a new and effective criterion to determine whether the sign clusters of the free field on $$\widetilde{{\mathcal {G}}}$$ G ~ are bounded or not. It also elucidates why the critical parameter for percolation of level sets on $$\widetilde{{\mathcal {G}}}$$ G ~ vanishes in most instances in the massless case and establishes the continuity of this phase transition in a wide range of cases, including all vertex-transitive graphs. When the sign clusters on $$\widetilde{{\mathcal {G}}}$$ G ~ do not percolate, we further determine by means of isomorphism theory the exact law of the capacity of compact clusters at any height. Specifically, we derive this law from an extension of Sznitman’s refinement of Lupu’s recent isomorphism theorem relating the free field and random interlacements, proved along the way, and which holds under the sole assumption that sign clusters on $$\widetilde{{\mathcal {G}}}$$ G ~ are bounded. Finally, we show that the law of the cluster capacity functionals obtained in this way actually characterizes the isomorphism theorem, i.e. the two are equivalent.


2018 ◽  
Vol 2020 (3) ◽  
pp. 883-913 ◽  
Author(s):  
Vadim Gorin ◽  
Adam W Marcus

Abstract Three operations on eigenvalues of real/complex/quaternion (corresponding to $\beta =1,2,4$) matrices, obtained from cutting out principal corners, adding, and multiplying matrices, can be extrapolated to general values of $\beta>0$ through associated special functions. We show that the $\beta \to \infty $ limit for these operations leads to the finite free projection, additive convolution, and multiplicative convolution, respectively. The limit is the most transparent for cutting out the corners, where the joint distribution of the eigenvalues of principal corners of a uniformly-random general $\beta $ self-adjoint matrix with fixed eigenvalues is known as the $\beta $-corners process. We show that as $\beta \to \infty $ these eigenvalues crystallize on an irregular lattice consisting of the roots of derivatives of a single polynomial. In the second order, we observe a version of the discrete Gaussian Free Field put on top of this lattice, which provides a new explanation as to why the (continuous) Gaussian Free Field governs the global asymptotics of random matrix ensembles.


2020 ◽  
Vol 378 (1) ◽  
pp. 625-689 ◽  
Author(s):  
Ewain Gwynne

Abstract Let $$\gamma \in (0,2)$$ γ ∈ ( 0 , 2 ) , let h be the planar Gaussian free field, and consider the $$\gamma $$ γ -Liouville quantum gravity (LQG) metric associated with h. We show that the essential supremum of the Hausdorff dimension of the boundary of a $$\gamma $$ γ -LQG metric ball with respect to the Euclidean (resp. $$\gamma $$ γ -LQG) metric is $$2 - \frac{\gamma }{d_\gamma }\left( \frac{2}{\gamma } + \frac{\gamma }{2} \right) + \frac{\gamma ^2}{2d_\gamma ^2}$$ 2 - γ d γ 2 γ + γ 2 + γ 2 2 d γ 2 (resp. $$d_\gamma -1$$ d γ - 1 ), where $$d_\gamma $$ d γ is the Hausdorff dimension of the whole plane with respect to the $$\gamma $$ γ -LQG metric. For $$\gamma = \sqrt{8/3}$$ γ = 8 / 3 , in which case $$d_{\sqrt{8/3}}=4$$ d 8 / 3 = 4 , we get that the essential supremum of Euclidean (resp. $$\sqrt{8/3}$$ 8 / 3 -LQG) dimension of a $$\sqrt{8/3}$$ 8 / 3 -LQG ball boundary is 5/4 (resp. 3). We also compute the essential suprema of the Euclidean and $$\gamma $$ γ -LQG Hausdorff dimensions of the intersection of a $$\gamma $$ γ -LQG ball boundary with the set of metric $$\alpha $$ α -thick points of the field h for each $$\alpha \in \mathbb R$$ α ∈ R . Our results show that the set of $$\gamma /d_\gamma $$ γ / d γ -thick points on the ball boundary has full Euclidean dimension and the set of $$\gamma $$ γ -thick points on the ball boundary has full $$\gamma $$ γ -LQG dimension.


2010 ◽  
Vol 38 (2) ◽  
pp. 896-926 ◽  
Author(s):  
Xiaoyu Hu ◽  
Jason Miller ◽  
Yuval Peres

2018 ◽  
Vol 91 (5) ◽  
Author(s):  
Jafar Cheraghalizadeh ◽  
Morteza N. Najafi ◽  
Hossein Mohammadzadeh

Sign in / Sign up

Export Citation Format

Share Document