scholarly journals On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity

2021 ◽  
Vol 8 ◽  
pp. 331-378
Author(s):  
Patrick Cheridito ◽  
Pierre Patie ◽  
Anna Srapionyan ◽  
Aditya Vaidyanathan
2014 ◽  
Vol 266 (8) ◽  
pp. 4765-4808 ◽  
Author(s):  
Rupert L. Frank ◽  
Daniel Lenz ◽  
Daniel Wingert

2021 ◽  
Vol 272 (1336) ◽  
Author(s):  
Pierre Patie ◽  
Mladen Savov

We provide the spectral expansion in a weighted Hilbert space of a substantial class of invariant non-self-adjoint and non-local Markov operators which appear in limit theorems for positive-valued Markov processes. We show that this class is in bijection with a subset of negative definite functions and we name it the class of generalized Laguerre semigroups. Our approach, which goes beyond the framework of perturbation theory, is based on an in-depth and original analysis of an intertwining relation that we establish between this class and a self-adjoint Markov semigroup, whose spectral expansion is expressed in terms of the classical Laguerre polynomials. As a by-product, we derive smoothness properties for the solution to the associated Cauchy problem as well as for the heat kernel. Our methodology also reveals a variety of possible decays, including the hypocoercivity type phenomena, for the speed of convergence to equilibrium for this class and enables us to provide an interpretation of these in terms of the rate of growth of the weighted Hilbert space norms of the spectral projections. Depending on the analytic properties of the aforementioned negative definite functions, we are led to implement several strategies, which require new developments in a variety of contexts, to derive precise upper bounds for these norms.


2014 ◽  
Vol 14 (3) ◽  
pp. 451-491
Author(s):  
Gilles Lebeau ◽  
Laurent Michel

We study the spectral theory of a reversible Markov chain This random walk depends on a parameter $h\in ]0,h_{0}]$ which is roughly the size of each step of the walk. We prove uniform bounds with respect to $h$ on the rate of convergence to equilibrium, and the convergence when $h\rightarrow 0$ to the associated hypoelliptic diffusion.


Author(s):  
Zhifeng Shao

Recently, low voltage (≤5kV) scanning electron microscopes have become popular because of their unprecedented advantages, such as minimized charging effects and smaller specimen damage, etc. Perhaps the most important advantage of LVSEM is that they may be able to provide ultrahigh resolution since the interaction volume decreases when electron energy is reduced. It is obvious that no matter how low the operating voltage is, the resolution is always poorer than the probe radius. To achieve 10Å resolution at 5kV (including non-local effects), we would require a probe radius of 5∽6 Å. At low voltages, we can no longer ignore the effects of chromatic aberration because of the increased ratio δV/V. The 3rd order spherical aberration is another major limiting factor. The optimized aperture should be calculated as


Author(s):  
Zhifeng Shao ◽  
A.V. Crewe

For scanning electron microscopes, it is plausible that by lowering the primary electron energy, one can decrease the volume of interaction and improve resolution. As shown by Crewe /1/, at V0 =5kV a 10Å resolution (including non-local effects) is possible. To achieve this, we would need a probe size about 5Å. However, at low voltages, the chromatic aberration becomes the major concern even for field emission sources. In this case, δV/V = 0.1 V/5kV = 2x10-5. As a rough estimate, it has been shown that /2/ the chromatic aberration δC should be less than ⅓ of δ0 the probe size determined by diffraction and spherical aberration in order to neglect its effect. But this did not take into account the distribution of electron energy. We will show that by using a wave optical treatment, the tolerance on the chromatic aberration is much larger than we expected.


Sign in / Sign up

Export Citation Format

Share Document