Effects of different drip irrigation methods under plastic film on physiological characteristics and water use efficiency of protected cucumber

2014 ◽  
Vol 34 (22) ◽  
Author(s):  
赵志成 ZHAO Zhicheng ◽  
杨显贺 YANG Xianhe ◽  
李清明 LI Qingming ◽  
刘彬彬 LIU Binbin ◽  
杨振超 YANG Zhenchao
2020 ◽  
Vol 34 (3) ◽  
pp. 414-436
Author(s):  
Oluwasegun Olamide Fawibe ◽  
Motofumi Hiramatsu ◽  
Yuki Taguchi ◽  
Junfa Wang ◽  
Akihiro Isoda

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


2018 ◽  
Vol 64 (2) ◽  
pp. 57-64
Author(s):  
Ibrahim Mubarak ◽  
Mussaddak Janat ◽  
Mohsen Makhlouf

Abstract Due to water scarcity and dry Mediterranean conditions, improving water use efficiency is a major challenge for sustainable crop production and environment protection. Field experiments were conducted for two consecutive years (2010 and 2011) to assess the effects of variety and irrigation method on potato crop, following a 2 × 4 factorial experiment type arranged in a split plot design with two spring potato varieties (Spunta and Marfona), and four irrigation methods (drip irrigation with two modes of dripper spacing/dripper flow: 30 cm at 4 l/h and 60 cm at 8 l/h, sprinkle irrigation, and furrow irrigation), with three replicates. Potato was irrigated when soil moisture in the active root depth was within the range of 75-80% of field capacity as determined by the neutron probe technique. Results did not show any differences between both varieties. Moreover, no differences in marketable yield, total dry matter, and harvest index were found between irrigation methods. However, results showed that sprinkle irrigation significantly enhanced nitrogen use efficiency. Furthermore, both water productivity and irrigation water use efficiency were significantly increased under drip irrigation compared with the other irrigation methods. They were about twice those under furrow irrigation, indicating that the employment of drip irrigation method can effectively address water shortage and sustainable potato production, in the dry Mediterranean region.


2013 ◽  
Vol 39 (9) ◽  
pp. 1687 ◽  
Author(s):  
Zi-Jin NIE ◽  
Yuan-Quan CHEN ◽  
Jian-Sheng ZHANG ◽  
Jiang-Tao SHI ◽  
Chao LI ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fuqiang Li ◽  
Haoliang Deng ◽  
Yucai Wang ◽  
Xuan Li ◽  
Xietian Chen ◽  
...  

AbstractThe effects of the amount and timing of regulated deficit drip irrigation under plastic film on potato (‘Qingshu 168’) growth, photosynthesis, yield, water use efficiency, and quality were examined from 2017 to 2019 in cold and arid northwestern China. In the four stages of potato growth (seedling, tuber initiation, tuber bulking, starch accumulation), eight treatments were designed, with a mild deficit was in treatments WD1 (seedling), WD2 (tuber initiation), WD3 (tuber bulking), and WD4 (starch accumulation); and a moderate deficit in WD5 (seedling), WD6 (tuber initiation), WD7 (tuber bulking), and WD8 (starch accumulation). The net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly under water deficit in the tuber formation and starch accumulation stages. Although water deficit reduced potato yields, a mild deficit in the seedling stage resulted in the highest yield and water use efficiency at 43,961.91 kg ha−1 and 8.67 kg m−3, respectively. The highest overall quality was in potatoes subjected to mild and moderate water deficit in the seedling stage. Principal component analysis identified mild water stress in the seedling stage as the optimum regulated deficit irrigation regime. The results of this study provide theoretical and technical references for efficient water-saving cultivation and industrialization of potato in northwestern China.


2008 ◽  
Vol 95 (6) ◽  
pp. 659-668 ◽  
Author(s):  
Taisheng Du ◽  
Shaozhong Kang ◽  
Jianhua Zhang ◽  
Fusheng Li ◽  
Boyuan Yan

Sign in / Sign up

Export Citation Format

Share Document