Response of soil respiration and microbial biomass carbon and nitrogen to nitrogen application in subalpine forests of western Sichuan

2019 ◽  
Vol 39 (19) ◽  
Author(s):  
王泽西 WANG Zexi ◽  
陈倩妹 CHEN Qianmei ◽  
黄尤优 HUANG Youyou ◽  
邓慧妮 DENG Huini ◽  
谌贤 SHEN Xian ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1174
Author(s):  
Martin Brtnicky ◽  
Tereza Hammerschmiedt ◽  
Jakub Elbl ◽  
Antonin Kintl ◽  
Lucia Skulcova ◽  
...  

Different types of soil respond variably to biochar amendment. Soil structure and fertility are properties which strongly affect the impacts of biochar on soil fertility and microbial activity. A pot experiment with lettuce was conducted to verify whether biochar amendment is more beneficial in sandy soil than in clay soil. The nutrient content (carbon and nitrogen), microbial biomass carbon, soil respiration, metabolic quotient, and plant biomass yield were determined. The treatments were prepared by mixing silty clay loam (Haplic Luvisol) with a quartz sand in ratios of 0%, 20%, 40%, 60%, 80%, and 100% of sand; the same six treatments were prepared and amended with biochar (12 treatments in total). Soil carbon and nitrogen, microbial biomass carbon, and soil respiration were indirectly dependent on the descending sand ratio, whereas the metabolic quotient increased with the ascending sand ratio. The biochar’s effects were positive for total carbon, microbial biomass carbon, metabolic quotient, and plant biomass in the sand-rich treatments. The maximum biochar-derived benefit in crop yield was found in the 100% sand + biochar treatment, which exhibited 24-fold (AGB) and 11-fold (root biomass) increases compared to the unamended treatment. The biochar application on coarse soil types with lower fertility was proven to be favorable.


2017 ◽  
Vol 38 (4) ◽  
pp. 1765
Author(s):  
Larissa Castro Diógenes ◽  
José Ferreira Lustosa Filho ◽  
Alessandro Franco Torres da Silva ◽  
Júlio César Azevedo Nóbrega ◽  
Rafaela Simão Abrahão Nóbrega ◽  
...  

The aim of this study was to evaluate microbial biomass and total organic carbon and nitrogen of an irrigated Quartzarenic Neosol cultivated with two cowpea cultivars in Bom Jesus, Piauí, Brazil. The experiment was conducted in a randomized experimental block design in split plots. The plots consist of two cowpea cultivars (Aracê and Tumucumaque) and the subplots were composed of five different irrigation regimes (L1 = 108.2; L2 = 214.7; L3 = 287.9; L4 = 426.1, and L5 = 527.7 mm). Soil samples were collected at a depth of 0-0.20 m in order to evaluate basal soil respiration, microbial biomass carbon, metabolic quotient, microbial quotient, content, and storage of soil carbon and nitrogen. Basal soil respiration, microbial biomass carbon, microbial metabolic quotient, and microbial quotient are influenced by the interaction between cowpea cultivars and irrigation. The cultivar Aracê showed greater stimulus to the microbial community, while the irrigation regimes with 214.7 and 287.9 mm (60 and 90% of ETo, respectively) provided the best moisture conditions for microbial activities.


2015 ◽  
Vol 12 (22) ◽  
pp. 6751-6760 ◽  
Author(s):  
Z. H. Zhou ◽  
C. K. Wang

Abstract. Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published up to November 2014 across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg−1), Nmic (60.1 mg kg−1, Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic / Nsoil rate (3.43 %) across China's forests. The natural forests had significantly greater Cmic (514.1 mg kg−1 vs. 281.8 mg kg−1) and Nmic (82.6 mg kg−1 vs. 39.0 mg kg−1) than the planted forests, but had less Cmic : Nmic ratio (7.3 vs. 9.2) and Cmic / Csoil rate (1.7 % vs. 2.1 %). Soil resources and climate together explained 24.4–40.7 % of these variations. The Cmic : Nmic ratio declined slightly with Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plasticity of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil rate decreased with Csoil : Nsoil ratio, whereas the Nmic / Nsoil rate increased with Csoil : Nsoil ratio; the former was influenced more by soil resources than by climate, whereas the latter was influenced more by climate. These results suggest that soil microbial assimilation of carbon and nitrogen are jointly driven by soil resources and climate, but may be regulated by different mechanisms.


2021 ◽  
Author(s):  
Shangdong Yang ◽  
Jian Xiao ◽  
Tian Liang ◽  
Weizhong He ◽  
Hongwei Tan

Abstract Field experiments were performed in early March 2019 at the farm of the Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences. Four concentrations of nitrogen application were employed as follows: that is, urea applications 964, 482, 96, 0 kg ha− 1, respectively. And 300 kg ha− 1 calcium, magnesium, and phosphorus were likewise applied in 4 different treatments. The results showed that the soil microbial biomass carbon and phosphorus were altered significantly by non- and low-nitrogen input. Moreover, the indexes of soil bacterial richness and diversity in the sugarcane field could be significantly improved, even by low nitrogen input. At the genus level, norank_f__SC-I-84, Mycobacterium, norank_f__Micropepsaceae, norank_f__norank_o__Saccharimonadales, norank_f__norank_o__Subgroup_2 and norank_f__Acetobacteraceae were the unique dominant bacteria in the soil with the high nitrogen input treatment. norank_f__JG30-KF-CM45 and Jatrophihabitans were the unique dominant genera in the moderate nitrogen input treatment. norank_f__norank_o__norank_c__Subgroup_6, HSB_OF53-F07, Streptomyces, norank_f__67 − 14, norank_f__norank_o__SBR1031 and norank_f__norank_o__norank_c__KD4-96 were the unique dominant genera in the low nitrogen input treatment. In contrast, FCPS473, Actinospica, 1921-2, Sinomonas, and norank_f__Ktedonobacteraceae were the unique dominant genera in CK (no nitrogen application treatment). It suggested that low nitrogen input was the most significant effect on the soil microbial biomass carbon and phosphorus in the sugarcane field. Moreover, low nitrogen input also can improve the diversity and richness of sugarcane soil bacteria. The dominant bacterial genera of low nitrogen input and the other treatments were different for the compositions of dominant bacteria, and the largest abundance difference of dominant bacterial genera was norank_f__norank_o__norank_c__Subgroup_6. However, whether low nitrogen stress can improve the yield and quality of sugarcane warrants further research.


Sign in / Sign up

Export Citation Format

Share Document