Ecological security pattern construction method based on the perspective of ecological supply and demand: a case study of Yangtze River Delta

2019 ◽  
Vol 39 (20) ◽  
Author(s):  
张豆 ZHANG Dou ◽  
渠丽萍 QU Liping ◽  
张桀滈 ZHANG Jiehao
2022 ◽  
Vol 14 (2) ◽  
pp. 296
Author(s):  
Shiyao Zhang ◽  
Huaiyong Shao ◽  
Xiaoqin Li ◽  
Wei Xian ◽  
Qiufang Shao ◽  
...  

Urbanization has not only promoted economic development, but also significantly changed land use and development strategy. The environmental problems brought by urbanization threaten ecological security directly. Therefore, it is necessary to introduce changes in land use when constructing an ecological security pattern. This study takes the Yangtze River Delta urban agglomeration, one of the most economically developed regions in China, as the research area. Based on its land use status, the Cellular Automata–Markov model was used to predict the quantitative change and transfer of land-use types in 2025, and three types of land-use patterns were simulated under different scenarios. Combined with the pressure–state–response model, the Entropy TOPSIS comprehensive evaluation model is used to evaluate the three phases in the years of 2005, 2010, and 2015, and the results indicated that the safety level dropped from 85.45% to 82.94%. Five spatial associations were obtained from the spatial autocorrelation analysis using GeoDA, and the clustering distribution of the three phases was roughly the same. Based on the requirements of “Natural Growth” scenario, “Urban Sprawl” scenario, and “Ecological Protection” scenario, the transfer matrix of the various land-use types were modified rationally. The results of scenario simulations illustrated that the level of urbanization was inversely proportional to the level of ecological security. The surrounding cities in the northern part of Taihu Lake were developing rapidly, with low levels of ecological security. The hilly cities in the southern part, in contrast, developed slowly and had a high level of ecological security. Based on the temporal and spatial changes in the ecosystem, an ecosystem optimization model was proposed to determine the ecological functional areas. The nature of each functional area provided the basis to formulate urban construction and management plans and achieve sustainable urban development.


Sign in / Sign up

Export Citation Format

Share Document