The real numbers: an introduction to set theory and analysis

2014 ◽  
Vol 51 (12) ◽  
pp. 51-6804-51-6804
Keyword(s):  
1999 ◽  
Vol 64 (4) ◽  
pp. 1601-1627 ◽  
Author(s):  
Kai Hauser

AbstractFor a canonical model of set theory whose projective theory of the real numbers is stable under set forcing extensions, a set of reals of minimal complexity is constructed which fails to be universally Baire. The construction uses a general method for generating non-universally Baire sets via the Levy collapse of a cardinal, as well as core model techniques. Along the way it is shown (extending previous results of Steel) how sufficiently iterable fine structure models recognize themselves as global core models.


1951 ◽  
Vol 16 (2) ◽  
pp. 130-136 ◽  
Author(s):  
John Myhill

In a previous paper, I proved the consistency of a non-finitary system of logic based on the theory of types, which was shown to contain the axiom of reducibility in a form which seemed not to interfere with the classical construction of real numbers. A form of the system containing a strong axiom of choice was also proved consistent.It seems to me now that the real-number approach used in that paper, though valid, was not the most fruitful one. We can, on the lines therein suggested, prove the consistency of axioms closely resembling Tarski's twenty axioms for the real numbers; but this, from the standpoint of mathematical practice, is a pitifully small fragment of analysis. The consistency of a fairly strong set-theory can be proved, using the results of my previous paper, with little more difficulty than that of the Tarski axioms; this being the case, it would seem a saving in effort to derive the consistency of such a theory first, then to strengthen that theory (if possible) in such ways as can be shown to preserve consistency; and finally to derive from the system thus strengthened, if need be, a more usable real-number theory. The present paper is meant to achieve the first part of this program. The paragraphs of this paper are numbered consecutively with those of my previous paper, of which it is to be regarded as a continuation.


2011 ◽  
Vol 17 (3) ◽  
pp. 361-393 ◽  
Author(s):  
José Ferreirós

AbstractSet theory deals with the most fundamental existence questions in mathematics-questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels ofquasi-combinatorialismorcombinatorial maximality. After explaining what is meant by definability and by “arbitrariness,” a first historical part discusses the strong motives why set theory was conceived as a theory of arbitrary sets, emphasizing connections with analysis and particularly with the continuum of real numbers. Judged from this perspective, the axiom of choice stands out as a most central and natural set-theoretic principle (in the sense of quasi-combinatorialism). A second part starts by considering the potential mismatch between the formal systems of mathematics and their motivating conceptions, and proceeds to offer an elementary discussion of how far the Zermelo–Fraenkel system goes in laying out principles that capture the idea of “arbitrary sets”. We argue that the theory is rather poor in this respect.


2021 ◽  
pp. 3-27
Author(s):  
James Davidson

This chapter covers set theory. The topics include set algebra, relations, orderings and mappings, countability and sequences, real numbers, sequences and limits, and set classes including monotone classes, rings, fields, and sigma fields. The final section introduces the basic ideas of real analysis including Euclidean distance, sets of the real line, coverings, and compactness.


The Monist ◽  
2020 ◽  
Vol 103 (4) ◽  
pp. 427-441
Author(s):  
Juliet Floyd

Abstract I defend Putnam’s modal structuralist view of mathematics but reject his claims that Wittgenstein’s remarks on Dedekind, Cantor, and set theory are verificationist. Putnam’s “realistic realism” (1990–2016) showcases the plasticity of our “fitting” words to the world. The applications of this—in philosophy of language, mind, logic, and philosophy of computation—are robust. I defend Wittgenstein’s nonextensionalist understanding of the real numbers, showing how it fits Putnam’s view. Nonextensionalism and extensionalism about the real numbers are mathematically, philosophically, and logically robust, but the two perspectives are often confused with one another. I separate them, using Turing’s work as an example.


2020 ◽  
pp. 219-254
Author(s):  
Akihiro Kanamori

Georg Cantor (1845-1919) made seminal contributions to the mathematical conceptualization of continuity and continua that would become basic for the development of topology and measure theory in mathematics. His articulations in this direction were part and parcel of his development of set theory out of mathematical analysis and, on a larger canvas, very much part of the rigorization of mathematics in the latter 19th Century. We consider Cantor’s work on the formulation of the real numbers; uncountability and dimension; and continua as formulated in terms of perfect and connected sets as seen in this light. The thematic emphasis will be on the drive of mathematical necessity for the mathematization of metaphysicially based concepts.


1995 ◽  
Vol 38 (2) ◽  
pp. 223-229
Author(s):  
John Lindsay Orr

AbstractA linearly ordered set A is said to shuffle into another linearly ordered set B if there is an order preserving surjection A —> B such that the preimage of each member of a cofinite subset of B has an arbitrary pre-defined finite cardinality. We show that every countable linearly ordered set shuffles into itself. This leads to consequences on transformations of subsets of the real numbers by order preserving maps.


2007 ◽  
Vol 72 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Ehud Hrushovski ◽  
Ya'acov Peterzil

AbstractWe use a new construction of an o-minimal structure, due to Lipshitz and Robinson, to answer a question of van den Dries regarding the relationship between arbitrary o-minimal expansions of real closed fields and structures over the real numbers. We write a first order sentence which is true in the Lipshitz-Robinson structure but fails in any possible interpretation over the field of real numbers.


2011 ◽  
Vol 54 (2) ◽  
pp. 411-422
Author(s):  
Jaroslav Hančl ◽  
Radhakrishnan Nair ◽  
Simona Pulcerova ◽  
Jan Šustek

AbstractContinuing earlier studies over the real numbers, we study the expressible set of a sequence A = (an)n≥1 of p-adic numbers, which we define to be the set EpA = {∑n≥1ancn: cn ∈ ℕ}. We show that in certain circumstances we can calculate the Haar measure of EpA exactly. It turns out that our results extend to sequences of matrices with p-adic entries, so this is the setting in which we work.


Sign in / Sign up

Export Citation Format

Share Document