Aspects of the Real Numbers: Putnam, Wittgenstein, and Nonextensionalism
Abstract I defend Putnam’s modal structuralist view of mathematics but reject his claims that Wittgenstein’s remarks on Dedekind, Cantor, and set theory are verificationist. Putnam’s “realistic realism” (1990–2016) showcases the plasticity of our “fitting” words to the world. The applications of this—in philosophy of language, mind, logic, and philosophy of computation—are robust. I defend Wittgenstein’s nonextensionalist understanding of the real numbers, showing how it fits Putnam’s view. Nonextensionalism and extensionalism about the real numbers are mathematically, philosophically, and logically robust, but the two perspectives are often confused with one another. I separate them, using Turing’s work as an example.